

ÓBUDAI EGYETEM ÓBUDA UNIVERSITY Obuda university Doctoral School on Materials Sciences and Technologies

Development of composite materials for the electromagnetic interference (EMI) shielding

Student: Mariam Shbanah

Semester: Seventh 2024/2025

Supervisors: Dr. KOVÁCS Tünde and Prof. Dr. Mihály Réger

Content

- Introduction
- Experimental Setup
- Materials and Methods
- Composite Fabrication
- Results and Discussion
- Conclusions

Introduction

 Electronic devices rely on clear signals. Shielding prevents outside electromagnetic waves from messing with these signals, ensuring devices work properly.

Experimental Setup

- Advanced Microwave Optics System (The frequency range for testing was set between 320MHz and 960MHz.)
- The Schwarzbeck USLP9143 log periodic antenna and the magnetic loop antenna. (The frequency is between 109 Hz and 3.1011 Hz)

Materials and Methods

Materials Used

- Powders: Copper, Titanium
- .Fibres: Carbon fibre, Fiberglass, Copper fibre.

Composite Fabrication

- Designing and 3D printing of molds
- Blending materials and filling molds
- Post-processing

Titanium and Polyester-Based Materials

To prepare the composite material, polyester was mixed with titanium powder in two different weight ratios.

	~(
	-	-	
1			

Group	Titanium Weight (g)	Polyester Weight (g)	Density of Titanium (g/cm³)
1	6	30	4.11
2	9	30	4.11

Results and Discussion

The sample	The thickness (mm)	The weight (g)	Measured Ampere (mA)
1	1.24	1.8518	9
2	2.23	4.3616	8,4
3	4.29	8.8940	6,6
4	5.01	10.6232	6
5	0.68	1.4922	9
6	1.95	3.4814	8,4
7	3.91	7.2748	6,6
8	4.98	10.0475	6

A test was made using the Tests with the Advanced Microwave Optics System

The measured ampere as a function of the test sample weight

The measured ampere as a function of the test sample thickness

PLA-based EMI shielding composite material

• PLA is a matrix material because of its biodegradability and mechanical properties. Therefore, to create a new material using PLA, a conductive filler is required to use this material in electromagnetic shielding applications

Conclusion

- The research studies the electromagnetic shielding properties of new composite materials using two different groups of materials.
- PLA served as the main matrix material and showed its promising role in environmental sustainability for advanced EMI shielding applications.
- Incorporating conductive powders into PLA, proved to have not only high shielding effectiveness but also a high environmental merit that underlined the possibility of reusing materials or circular application cycles.

Study Strategy for the Upcoming Semester

- Conduct an in-depth analysis of the PLA-based composite's EMI shielding effectiveness and structural integrity.
- Exploration of Alternative Materials
- Comprehensive Testing
- Collaborative Research
- Publication and Dissemination

Draft theses

- 1. The shielding composite EMI shielding efficiency depends on the metal quantity (e.g. thickness of the shielding plate).
- The PLA metal powder composite mechanical properties can increase by heat treatment.
- 3. The PLA metal powder composite renewable material, it can recycle the metal powder after the PLA biodegradation.

Publications

1. "A Comprehensive Review of EMI shielding materials"

Authors: M. Shbanah, T.A. Kovács

Status: Pending review in Critical Infrastructure Protection: Advanced Technologies for Crisis Prevention and Response.

2. "The Effects of Electromagnetic Waves on Human Health"

Authors: M. Shbanah, T.A. Kovács

Published in Security-Related Advanced Technologies in Critical Infrastructure Protection: Theoretical and Practical Approach: Springer Netherlands, 2022. /Q4

3. "Developing a Mesh for Electromagnetic Shielding of Vehicles' Electronic Devices"

Authors: M. Shbanah, T.A. Kovács, Z. Nyikes

Advanced Sciences and Technologies for Security Applications 2024 pp. 315-328. Paper: Chapter 28, 14 p. (2024) / Q4

4. "The Effect of Heat Treatment on a 3D-Printed PLA Polymer's Mechanical Properties"

Authors: M. Shbanah, M. Jordanov, Z. Nyikes, L. Tóth, T.A. Kovács

Published In: Polymers, 15 : 6 p. 1587 , 12 p. (2023) / Q1

Thanks for your kind attention