

THE DIFFERENT HEAT TREATMENT EFFECTS FOR THE NITRIDATION EFFICIENCY OF THE 3D-PRINTED TITANIUM ALLOY

Name: Minhalina Binti Ahmad Buhairi Supervisors: Dr Tünde Kovács & Dr László Tóth

Semester 2 (2023/2024)

TITANIUM AND ITS ALLOYS

- Was discovered in 1790
- Properties including: light weight, high strength, high corrosion resistance, biocompatible

3 phases of titanium alloy							
α titanium	βtitanium	(α+ β) titanium					
 Single phase alloy composed of α Still maintain its strength and creep resistance at 500 to 600 °C Cannot be strengthened by heat treatment 	 Single phase alloy composed of β High strength before heat treatment Further strengthened after quenching and aging (1372~1666 MPa) 	 Two phase alloy Strength after heat treatment is about 50% to 100% higher than that of annealed state Can work for a long time at a temperature of 400 to 500 °C 					

TITANIUM AND ITS ALLOYS

HEAT TREATMENT

- Consists of heating of the material at a predefined temperature to achieve the desired characteristics
- To increase the mechanical strength, fracture toughness, creep strength, and fatigue strength
- To improve the wear resistance and frictional performance
- To enhance the ductility, thermal and dimensional stability, and creep resistance
- Type of heat treatment: annealing, aging, solution treating

HEAT TREATMENT: ANNEALING

5

	Chang et al. (2020)	Rautio et al. (2020)			
Parameter	800 °C for 2h	940 °C for 4h			
	Acicular α ' martensite to $\alpha+\beta$	Acicular α ' martensite to α platelets with interlamellar β			
Microstructure	Building direction Acicular o'				
Mechanical properties	YS: 960 MPa to 941 MPa EL: 7.4% to 16.7%	YS: 937 MPa to 939 MPa UTS: 1129 MPa (no change) EL: 8.8% to 8.3%			

HEAT TREATMENT: AGING

- Also known as precipitation hardening
- Used to increase the yield strength of materials
- Precipitation of α phase occurs through decomposition of β phase. The α precipitates finely distributed in β matrix lead to increase in strength of material
- 3 types of aging: high temperature aging, low temperature aging, and duplex aging

HEAT TREATMENT: AGING

Ti-3.5Al-5Mo-4V	Ji et al. (2021)					
Туре	Single-stage aging	Double-stage aging				
Parameter	Qupter U U U U U U U U U U U U U U U U U U U	$\mathbf{L}_{\mathbf{M}} = \mathbf{L}_{\mathbf{M}} = $				
Microstructure	Consists of α+β	refined α phase and β phase				
Mechanical property	-	Hardness: 350 Hv (pre aging) to 524 HV				

HEAT TREATMENT: SOLUTION TREATMENT

- In which alloy is being heated at an appropriate temperature for the specific duration so that the required constituent enters the solid solution followed by fast cooling
- Consists of 3 steps:
 - (a) heating the material to a high temperature to take the alloying elements into solution in the β phase,
 - (b) holding at this temperature to achieve homogenization
 - © fast cooling to room temperature

RESEARCH OBJECTIVES

- To study the suitable heat treatment processes for 3D-printed Ti6Al4V alloy via SLM printing method
- To evaluate the effects of heat treatment on the microstructure, physical and mechanical properties of Ti6Al4V samples
- To analyze the relationship between heat treatment and nitridation efficiency of 3D-printed Ti6Al4V alloy
- To optimize technological parameters to obtain suitable mechanical and tribological properties of 3D-printed Ti6Al4V parts

RESEARCH SCOPE

- Addresses the challenges of corrosion resistance associated with Ti6Al4V alloy
- Investigates the application of heat treatments and nitridation to enhance corrosion and wear resistance properties
- Understanding the relationship between heat treatment parameters and nitridation efficiency for 3D-printed Ti6Al4V alloy

RESEARCH PLAN

- Semester I Literature review on corrosion behavior of Ti6Al4V alloy
- Semester 2 Literature review on heat treatment of 3D-printed Ti6Al4V alloy
- Semester 3 Nitridation experiments on heat-treated Ti6Al4V alloy
- Semester 4 Analysis on heat treatment and nitridation process
- Semester 5 Validation experiment using optimal parameter
- Semester 6 Control study (if needed)
- Semester 7 Thesis writing
- Semester 8 Public defense

EXPECTED OUTCOMES

- Determination of the heat treatment parameters of the Ti6Al4V alloy to achieve the wanted phases
- Understanding the relationship between the mechanical performance and corrosion resistance achieved by heat treatment and nitriding
- Determination of the optimal microstructure for the properties to be achieved

FUTURE WORKS

- This semester: literature review on heat treatment of Ti6Al4V alloy
- Heat treatment processes on 3D-printed Ti6Al4V alloy
- Corrosion test on 3D-printed and heat-treated Ti6Al4V samples
- Publication of corrosion test and heat treatment result

GANTT CHART

|4

Planned	2023	2024		2025		2026		2027
Current stage	I	П	I	П	I	п	I	П
Literature review								
Heat treatment processes on 3D printed Ti6Al4V alloy								
Nitridation experiments on heat-treated samples								
Parameters optimization based on relationship between heat treatment and nitridation efficiency								
Publication and conference								
Thesis writing								

THANK YOU FOR YOUR ATTENTION

Presented by: Minhalina Binti Ahmad Buhairi