<u>DEVELOPMENT OF HIGH-SENSITIVITY OPTICAL METHODS FOR</u> <u>The Monitoring of Interfaces</u>

ÓBUDAI EGYETEM ÓBUDA UNIVERSITY

DESHABRATO MUKHERJEE (TK8VY2)

mukherjee.deshabrato@ek-cer.hu

Supervisor: DR. PÉTER PETRIK

petrik.peter@ek-cer.hu

Centre for Energy Research

ÓBUDA UNIVERSITY (DOCTORAL SCHOOL OF MATERIAL SCIENCE AND TECHNOLOGIES) **CENTRE FOR ENERGY RESEARCH (**PHOTONICS DEPARTMENT)

> ELLIPSOMETRY IN-SITU ELLIPSOMETRY & OPTICAL MODELS CONVENTIONAL FLOW CELL ELLIPSOMETRY \succ INTERNAL REFLECTION ELLIPSOMETRY & FEM > FINITE ELEMENT RESULTS BY JCMWAVE CONVENTIONAL CONFIGURATION **KRETSCHMANN-RAETHER CONFIGURATION** ii. > CURRICULUM ACTIVITIES > FUTURE WORK > REFERENCES

ELLIPSOMETRY

Ellipsometry measures the change of polarization of an incident beam caused by a sample for determining surface layers.

$$R_{\rm P}/R_{\rm s}$$
= tan (Ψ) e^{i Δ} (1)

IN-SITU ELLIPSOMETRY & OPTICAL MODELS

					۴ ۵
Measurement In situ Analysis Hardware C	ptions				
Data: 2023.01.18_1umGe_Combi_Ag_linescan	Model: 2023.01.18_1umGe_Combi_Ag_linescan_002	(Snapshot)			
Qpen Save Info. Set Ranges	Ogen Save Clear			Open Snapshot	Save Snapshot
Fit Generate EI Fit Scan Qata generate MSE = 3.738 Thorizes # 1 = 3.40±0.396 nm EH = 3.07±0.896 2 EH = 3.07±0.896 2 EH = 3.07±0.896 2 ER Amp = 24.008±2.7945	Layer Commands Too Delete Save Include Surface Roughness = <u>OFF</u> + Tayer #1 = <u>8.5pine</u> Thicheess #1 = <u>3.40 nm</u> (fit) + Substate = <u>costs</u> Angle Offset = <u>0.00</u> + MODEL Options + OTHER Options + OTHER Options <u>Configure Options</u> <u>Turn Off AI FR Parameters</u>				
1. A.T.					
Graph Type 🗌 Show Map Data Position: 🖓 💳					Show Data
		Spectroscopic Data At X=0, Y=-1.	2		Zoom A
40					
Psi (65.00, 70.00, 75.1 Delta (65.00, 70.00, 75.1 Model 30	<mark>10°)</mark> 5.00°)				200
17 20					100
					U
300	600 9	900 12	200 18	500	1800
		Wavelength (nm)			

CompleteEASE User Interface

In Situ Spectroscopic Ellipsometry measures a sample "in position" as conditions are varied. It is also common to use in situ measurements to characterize optical constants during different process conditions.

4

With in situ capability, the sample can be characterized:
Prior to Film Deposition for Accurate Substrate Characterization
In Real-time for Thickness and Optical Constants Monitoring
Before exposure to Air/Oxidation

The CompleteEASE software includes built-in models covering a wide range of typical samples that conveniently describe how to process the data to determine thin film properties. Real-time data acquisition is also possible to monitor and control the processes under investigation.

CONVENTIONAL FLOW CELL ELLIPSOMETRY

Beam path in a conventional flow cell

Flow-cells of 'through-liquid' configuration

Features of the conventional setup:

Monitoring of the thickness of adsorbed layers

5

- Kinetics of adsorption
- Optical Constants (n,k)
- Surface Quality before and after processing
- Process Conditions that affect optical constants
- Material Properties that have an effect on optical constants

INTERNAL REFLECTION ELLIPSOMETRY & FEM

JCMgeo

<u>Kretschmann–Raether Flow cell &</u> <u>JCM Modelled K-R Configuration</u> Total Internal Reflection Ellipsometry (TIRE) is a combination of internal reflection and ellipsometry. In the Kretschmann–Raether prism geometry, the prism is mounted on a flow cell for measurements in liquids. The surface in contact with the liquid is a thin metal film evaporated on a glass slide, which is in optical contact with the prism by an index matching liquid. ^[6]

6

JCMcontrol

JCMsuite is a software package with a focus on fast and highly accurate electromagnetic simulations for finite element analysis.^[1] It is based on the following modules::

JCMview

JCMsolve

CONVENTIONAL CONFIGURATION

7

For our experiment, d = 40 nm Au on glass in reflection setup, i.e. air/Au-grating/glass, is modelled using JCMsuite. The parameters used are as follows: Angle of Incidence (ADI) = 60°, Period = 300 nm, Unit cell = 300 nm x 300 nm, Critical Dimension (CD): Au line width.

Delta Psi 300 300 - 144 45 250 -250 108 40 72 35 200 200 36 E 150 30 (Eu) 150 d 0 - 25 0 G - 20 -36 CD 100 100 --72 15 -108- 10 50 50 -144- 5 -180 400 600 700 400 500 600 700 500 Wavelength (nm) Wavelength (nm) Optical configuration Psi results obtained Delta results obtained

KRETSCHMANN-RAETHER CONFIGURATION

8

For our experiment, d = 40 nm Au on glass in Kretschmann-Raether setup, i.e. glass/Au-grating/water, is modelled using JCMsuite. The parameters used are as follows: Angle of Incidence (AOI) = 75°, Period = 300 nm, Unit cell = 300 nm x 300 nm, Critical Dimension (CD): Au line width.

KRETSCHMANN-RAETHER CONFIGURATION

9

For our experiment, d = 40 nm Au on glass in Kretschmann-Raether setup, i.e. glass/Au-grating/water, is modelled using JCMsuite. The parameters used are as follows: Angle of Incidence (ADI) = 75°, Period = 300 nm, Unit cell = 300 nm x 300 nm, Critical Dimension (CD): Au line width.

CURRICULUM ACTIVITIES

No	Neptun Code	Subject	Professor	Semester
1	OATBESZ5ND	Research Report V.	Dr. Recskiné Dr. Borsa Judit Ilona	5
2	DATKUTP5ND	Research Project V.	Dr. Recskiné Dr. Borsa Judit Ilona	5

No	Publication	IF	Total credit	%	Personal
1	Mukherjee, Deshabrato, and Peter Petrik. " Real-Time Ellipsometry at High and Low Temperatures " ACS Omega 8, no. 4 (January 31, 2023): 3684–97. <u>https://doi.org/10.1021/acsomega.2c07438</u> .	4.263	36		36
2	Mukherjee, Deshabrato, Benjamin Kalas, Sven Burger, G. Safran, M. Serenyi, Miklos Fried, and Peter Petrik. " Nanostructures for In-Situ Surface-Enhanced Kretschmann-Raether Ellipsometry" In Photonic Instrumentation Engineering X, edited by Yakov Soskind and Lynda E. Busse, 37. San Francisco, United States: SPIE, 2023. <u>https://doi.org/10.1117/12.2649080</u> .	0.367	24		24
3	Labadi, Zoltan, Csaba Bakos, Mate Szucs, Attila Bonyar, Deshabrato Mukherjee, Hajnalka Jankovics, Ferenc Vonderviszt, and Peter Petrik. " Ellipsometry Monitoring of Sensor Processes Based on Gold Nanoparticle Bonded Proteins . In Colloidal Nanoparticles for Biomedical Applications XVIII, edited by Marek Osiński and Antonios G. Kanaras, 24. San Francisco, United States: SPIE, 2023. <u>https://doi.org/10.1117/12.2649990</u> .	0.367	24		24
4	Merkel D.G., Sájerman K., Váczi T., Lenk S., Hegedűs G., Sajti S., Németh A., Gracheva M.A., Petrik P., Mukherjee D., Horváth Z.E., Nagy D.L., Lengyel A. "Laser irradiation effects in FeRh thin film" (2023) Materials Research Express, 10 (7), Art. no. 076101. https://doi.org/10.1088/2053-1591/ace4a3	2.270	36		18
5	Chou Ta-Shun, Bin Anooz Saud , Grüneberg Raimund, Rehm Jana, Ahktar Arub, Mukherjee Deshabrato, Petrik Peter , Popp Andreas. "In - situ spectral reflectance investigation of heteroepitaxial grown β-Ga₂O₃thin films on c-plane Al₂O₃ via MOVPE process" (2024) Applied Surface Science. <u>https://doi.org/10.1016/j.apsusc.2024.159370</u>	7.146	36		18

CURRICULUM ACTIVITIES

11

CONFERENCES ATTENDED

- 🖸 50. Műszaki Kémiai Napok, April 26-28, 2022, Veszprém, Hungary
- **Face2Phase Conference**, November 7-9, 2022, Delft, Netherlands
- **SPIE Photonics West Conference**, January 28-February 2, 2023, San Francisco, United States of America.
- 36th European Conference on Surface Science (ECOSS-36). August 28 September 1, 2023, Lodz, Poland.
- □ 12th Workshop on Spectroscopic Ellipsometry (WSE). September 18-22, 2023. Prague, Czech Republic.
- **ROMPHYSCHEM 17th edition**. September 25-27, 2023, Bucharest, Romania.

OTHER WORKS

- **Reviewing the related literature of ellipsometry and finite element modelling.**
- Attended the online seminar "3rd Edition of Surface Science Discussions" on January 9-10, 2024.
- Conducting various measurements on varied samples from Leibniz-Institut für Kristalzüchtung (IKZ), Berlin using the TSEL 1000 heat cell stage on the J.A. Woollam M-2000 DI ellipsometer ranging up to temperatures of 1000 °C. These will lead to an upcoming publication this year.
- Involved in investigations combining spectroscopic ellipsometry with cyclic voltammetry.
- A research article titled "Optical and sensing properties of thermally generated gold nanoislands created by the annealing of layers with graded thickness" was recently submitted for publication.
- Progressing with a review article on **"In-situ ellipsometry at solid-liquid interfaces"** which will be submitted soon.

FUTURE WORK

- Sensing measurement of heavy metals in a self-developed novel non-depolarizing Kretschmann-Raether flow cell for ellipsometry. The cell has been constructed and the preliminary set of sensing measurements were done and will be followed up with further studies and results for a publication.
- Analysis of amorphous carbon samples for sensing applications. All the measurement data are available.
- Measurement on gold grating nanostructures in a Kretschmann-Raether flow cell for ellipsometry. Study of the modeling capabilities for periodic plasmonic nanostructures. The preparation of the grating structures had been due for a long time that was recently supplied by a partner of an international project. The measurements and analysis will be done in this upcoming semester.
- Heavy metal sensing in an optical flow cell using monomers of genetically engineered flagellar filaments. Pre-experiments have already been completed. All the required materials are available for the investigations.
- Review of in situ ellipsometry at solid-liquid interfaces.

13

□ <u>www.jcmwave.com/docs/</u>

- qd-uki.co.uk/wp-content/uploads/2019/07/In-Situ-EllipsometryJ-A-Woollam-In-Situ-Brochure-small.pdf
- Matthias Wurm, Tobias Grunewald, Sven Teichert, Bernd Bodermann, Johanna Reck, & Uwe Richter, "Some aspects on the uncertainty calculation in Mueller ellipsometry"; Optics Express Vol. 28, Issue 6 pp. 8108-8131, (2020)
- Postava, K., Maziewski, A., Yamaguchi, T., Ossikovski, R., Visnovsky, S., & Pistora, J. "Null ellipsometer with phase modulation"; Optics Express, 12(24), 6040, (2004).
- Chen, Y., Meng, Y., & Jin, G. "Optimization of off-null ellipsometry for air/solid interfaces"; Applied Optics, 46(35), 8475, (2007).
- Nador, J., Kalas, B., Saftics, A., Agocs, E., Kozma, P., Korosi, L., ... Petrik, P. "Plasmon-enhanced two-channel in situ Kretschmann ellipsometry of protein adsorption, cellular adhesion and polyelectrolyte deposition on titania nanostructures"; Optics Express, 24(5), 4812, (2016).
- Arwin, H., Poksinski, M., & Johansen, K. "Total internal reflection ellipsometry: principles and applications"; Applied Optics, 43(15), 3028, (2004).
- Hiroyuki Fujiwara, "Spectroscopic Ellipsometry Principles and Application" Japanese Edition, Copyright 2003, ISBN 4 621 07253 6, Published by Maruzen Co. Ltd, Tokyo, Japan

THANK YOU