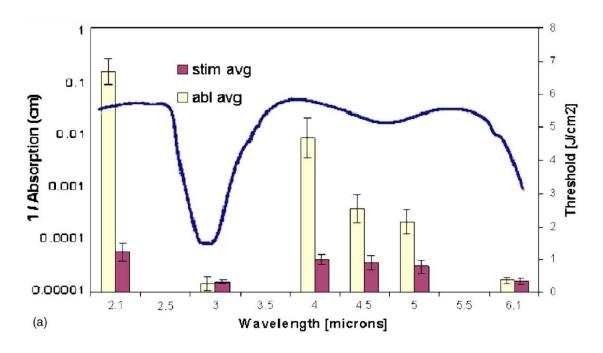






## Characterization of optical microsystems designed to thermal control of the neural tissue

HORVÁTH, Ágoston Csaba MSc electrical engineer


supervisor: FEKETE, Zoltán PhD – MTA EK MFA

Research Group for Implantable Microsystems

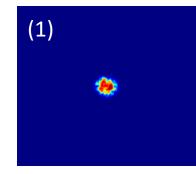
Interim report (semester 3) – 25 Jan, 2018

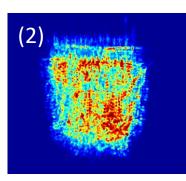
#### Neuroscientific motivations

- Effect of body temperature and brain temperature on neural activity
- Pulsed infrared neural stimulation (INS)
- Biological mechanism of INS?
- Precise, multimodal tool is needed
- Current INS is limited to cortical investigations

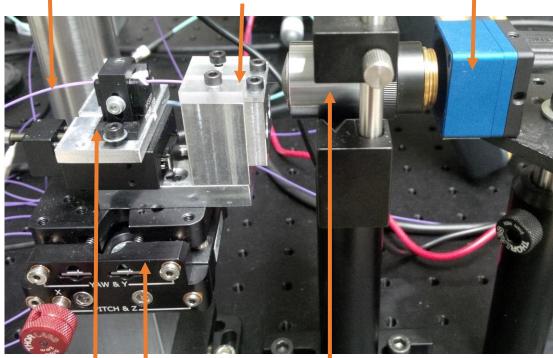


Wells et al., J. Biomed. Opt. 10 (2005)


 $\rightarrow$  My work: multimodal Si brain electrode = optrode


#### Multimodal brain electrode

- Electrophysiology
  - Rectangular-shape Pt thinfilm
  - 30×30  $\mu m^2$  recording sites with 100  $\mu m$  spacing
- Thermometer
  - Meander-shape Pt thinfilm
- Optical stimulation
  - Bulk Si: mechanical substrate and IR waveguide (2 in 1)


### Modality 1 – Optical measurement

- Relative LASER beam power measurement CMOS beam profiler (CINOGY Techn. GmbH)
- 1. Reference image: optical power coupled out from the optical fibre (max. 5 mW)
- Electrode image: optical power coupled out from the blunt-type electrode tip (fiber inserted into the chip's fiber guide)
- 3. Overall coupling efficiency: ratio of (2) and (1)





Multimode fibre Custom designed sample holder

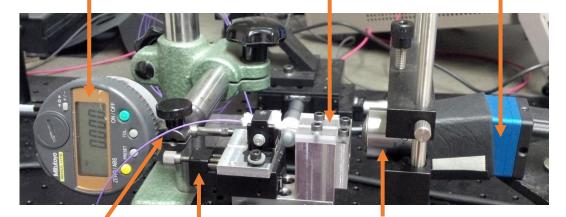


1D translation stage

3D translation stage

Microscope objective as imaging optic (50×, NA=0.8)

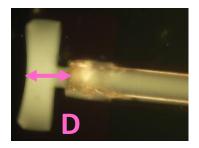
CMOS beam profiler


#### Modality 1 – Measurement results

- Theoretical max. waveguiding eff.: 48%
- Device under test:
  - Individual optrode chips
  - Fully assembled optrode devices
- Packaging improved the measurement repeatability

# Modality 1 – Impact of fibre facet position from coupling lens (D)

4-digit digital micrometer


Custom designed CMOS beam profiler sample holder



Multimode fibre

1D translation stage

Microscope objective as imaging optic (50×, NA=0.8)



• Average of D was calculated in case of max. waveguiding efficiency

#### Modality 1 – Laser beam divergence

- Far-field IR images by a CMOS beam profiler
- Spatial positions of diffraction maxima were observed along the horizontal and the vertical axes
- Two characteristic measures: inner and outer neighbours

#### Modality 2 – Thermal measurement

- Pt thin film resistance thermometer
- Calibration:
  - Simultaneous measurement with a NTC thermistor (±0.14 °C) as reference
  - 0.5 dl physiological saline
  - Various immersion depths
  - Control and recording: custom-developed Matlab code

#### Summary

- Multimodal MEMS brain electrode development
  - 3 integrated modalities: electrical recording, thermal measurement, IR wave guiding
- Test measurements
  - Relative beam power measurement
  - Impact of fibre facet position from coupling lens
  - Beam divergence measurement
  - Thermometer calibration in 3 different immersion depth
- Further aims:
  - Optical measurement: impact of core/cladding diameter on waveguiding behaviour
  - Simultaneous testing of the three modalities on packaged devices
  - In vivo validation

#### Publications – completed

- Á. Cs. Horváth, Ö. Sepsi, Cs. Ö. Boros, Sz. Beleznai, Pál Koppa, Z. Fekete: Multimodal neuroimaging microtool for infrared optical stimulation, thermal measurements and recording of neuronal activity in the deep tissue, oral presentation at the 31<sup>st</sup> Eurosensors conf. in Sept. 2017. Citation: Proceedings 2017; 1(4): 494.
- Horváth ÁCs, Sepsi Ö, Boros CsÖ, Beleznai Sz, Koppa P, Fekete Z: Multimodal neuroimaging microtool for infrared optical stimulation, thermal measurements and recording of neuronal activity in the deep tissue, poster presentation at FENS Regional Meeting in Sept. 2017.
- Horváth Á. Cs.: About the technology of deep brain implants with flexible carrier, oral presentation at the 33<sup>rd</sup> Kandó conf. in Nov. 2017.
- Horváth Á. Cs.: About the technology of deep brain implants containing waveguide, oral presentation at the 33<sup>rd</sup> Kandó conf. in Nov. 2017.

#### Publications – soon

- Á. Cs. Horváth, Ö. Sepsi, Sz. Beleznai, Cs. Ö. Boros, P. Koppa, Z. Fekete: A multimodal microtool for spatially controlled infrared neural stimulation in the deep brain tissue, article under review.
- Á. Cs. Horváth, Cs. Ö. Boros, Ö. Sepsi, Sz. Beleznai, P. Koppa, Z. Fekete: Microoptrode with integrated thermal and electrophysiological recording sites and infrared waveguide for monitoring and stimulation of the neural tissue, submitted abstract to 20<sup>th</sup> IEEE DTIP conf. in May. 2018

#### Thank You for Your attention!