Doctoral Conference

Microfluidic Systems For Drug Analytical Applications

Dóra Bereczki

ELKH Centre for Energy Research Institute of Technical Physics and Materials Science Microsystems Laboratory

E-mail:bereczki.dora@ek-cer.hu

www.ek-cer.hu | www.mems.hu | www.biomems.hu

Introduction

Cancer

- 10 million deaths per year [1]
- 19 million newly diagnosed cancer patients [1]
- The leading cause of death worldwide
- The 5-year survival of the most common cancers is still low

Chemotherapy (CT)

- Widely used to treat malignancies
- 60%-of all cancer patients ~11 million people were treated
- CT protocols are established on a "one size fits all" basis

Ignore inter-patient differences in drug pharmacokinetic

Leading to improper dosing Drug resistance and unwanted side effects

Results in the previous semester

I. Microfluidic – device development

- A Plate Reader-compatible microfluidic chip was designed \checkmark and manufactured
- The geometric parameters of the microfluidic structure were optimized
- The microfluidic chip is suitable for the detection of microvolume samples
- Suitable for measuring the concentration of molecules \checkmark having fluorescent properties

2. Fluorescent method development

Energy Research

- The spectral fluorescent properties of Alexa Fluor 350 dye were screened
- The signal intensity and linearity were tested
- Advanced sensitivity and excellent linearity were achieved by \checkmark using a microfluidic cuvette

MEMS

NEMIS

Detection methodology for Anthracyclines

Anthracyclines

- Fluorescent emission at 600 nm detection in biological samples [2]
- Widely used group of CT- childhood cancer/breast cancer/lymphomas

Method development

- The spectral properties of anthracyclines were screened by using Tecan Spark Plate Reader both in a conventional plate and a designed microfluidic chip in the UV-VIS range (200-800 nm)
- Absorption and fluorescence emission spectra were determined for detailed spectral properties
- The effect of using different solvents (PBS, FBS) on the signal intensity was investigated
- The effect of volume reduction on signal intensity was tested in a • microfluidic environment
- Signal intensity and linearity were tested in a microfluidic environment •

NEMIS MIII OH NH2 " OH

Structure of Doxorubicin

http://www.chemspider.com/ChemicalStructure.29400.html

MEMS

Results in a 96-well plate

- The absorption and fluorescent emission spectra of Epirubicin and Doxorubicin were screened in a conventional 96-well plate [in PBS buffer solution]
- The fluorescent emission maximum of the measured drugs was around 590-600 nm
- Anthracyclines are appropriate for further measurement in a microfluidic environment

IOCE

MEMS.HU

Centre for Energy Research

Fluorescent Emission Spectra in Plate

MEMS

NEMIS

Publications

I. Bereczki Dóra, András Füredi, and Péter Fürjes "Plate reader compatible microfluidic chambers for fluorescent spectroscopy,, Mátrafüred – International Meeting on Chemical Sensors, June 12-17, 2022, Visegrád, Hungary

2. Bereczki Dóra, András Füredi, and Péter Fürjes "Plate reader compatible microfluidic cuvette for UV-excited fluorescent spectroscopy," Lab-on-a-Chip and Microfluidics Europe, June 21-22, 2022, Rotterdam, The Netherlands

Subjects

- I. Chemical sensors: methods and applications-EC methods applied on sensors (Abdul Ibdewi Shaban)
- 2. Selected chapters of material testing methods I.: FTIR, HPLC/MS (Erzsébet Takács), SEM, STM, AFM (Judit Telegdi)

References

NEMS

earch | Institute of Technical Physics and Materials Science | Microsystems Lab | mems.hu | bio ELKH Centre for Energy Res

10

(I) WHO Cancer Today- https://gco.iarc.fr/today/

(2) N. S. H. Motlagh, P. Parvin, F. Ghasemi, and F.Atyabi, "Fluorescence properties of several chemotherapy drugs: doxorubicin, paclitaxel, and bleomycin," *Biomedical Optics Express*, vol. 7, no. 6, Art. no. 6, May 2016, doi: 10.1364/BOE.7.002400.

NEMIS

ELKH | Centre for Energy Research | Institute of Technical Physics and Materials Science | Microsystems Lab | mems.hu | biomems.h

Thanks for your attention!

