Farkas Zoltán Bertalan: Zéró-dimenziós nano-struktúrák a GaAs alapú napelemek hatásfokemelésében szerkesztés alatt álló doktori értekezés Témavezető: Prof. Dr. Nemcsics Ákos

Miért fontosak a GaAs alapú nanostruktúrák?

- Napelemek hatásfokának javítása miatt (a PN átmenetben levő nanostruktúrák a tiltott sávban további megengedett energiaszinteket hoznak létre, ezzel bővül a haszonsítható foton-energiák spektruma)
- A kvantum és optikai számítástechnikai eszközök fejlesztése is lehetetlen lenne nanostruktúrák nélkül

Kutatási tevékenységem célja

A 0 dimenziós GaAs nanostruktúrák előállítása a technológiai paraméterek (lásd alább) nagyon sok kombinációjával lehetséges, hasznos tehát megismerni, hogy a nanostrktúrák egyes jellemzői (formája, méretei, felületegységre eső száma) hogyan függnek a technológiai paraméterek értékeitől

Ha sikerül valamilyen matematikai összefüggést találni a bemeneti (technológiai) paraméterek és a kimeneti (jellemző méretek, felületi sűrűség) paraméterek közt, ez tudományos és mérnöki szempontból is hasznos Hogyan alakítják ki a félvezető alapú nulla dimenziós nanostruktúrákat?

- Rácsfeszültség indukált Stranski-Krastanov (SK) módszer (a szubsztrát és a leválasztott anyag rácsállandója közötti különbség hozza létre a nanostruktúrákat – lattice mismatched heteroepitaxy)
- Csepp epitaxia (Droplet epitaxy (DE)) fémes komponenst (pl. galliumot) leválasztanak a hordozóra, a galliumcsepp a töredék torr arzén háttérnyomás hatására kristályossá válik

"Both methods are derived from standard epitaxial growth modes, lead to coherent self-assembly of defect free and optically active III-V composite semiconductor QD's" [M. Gurioli et al. 2019 Nature.com]

Rácsfeszültség indukált (Stranski-Krastanov) módszer

 hátrány: korlátozott anyag-, méret- és formaválaszték
Előny kevéssé érzékeny a technológiai paraméterekre (robosztus), könnyen megvalósítható Csepp epitaxiás módszer (a továbbiakban ezzel a módszerrel generált struktúrákat tárgyalok) ≻Hátrány: bonyolult folyamat

Előny: széleskörű anyag-, méret- és formaválaszték

A cseppepitaxiás (DE) eljárás paraméterei (technological parameters of DE process)

- Növesztési hőmérséklet Growth temperature (Kelvin)
- Gallium fluxus Gallium flux (Monolayer/second ML/s)
- Arzén háttérnyomás Arsenic background pressure (torr)
- Hőkezelés hőmérséklete Heat treatment (annealing) temperature (Kelvin)
- Hőkezelés időtartama Heat treatment (annealing) time (minute)

Ha a fizikai mennyiségek egyenesen arányosak (pl. Torr – Pascal) bármelyik megfelel, azonban ha nem arányosak (Kelvin – Celsius) csak az abszolút skála alkalmas

Nanostruktúra típusok és jellemző méretek illusztrációja I.

Nanostruktúra típusok és jellemző méretek illusztrációja (gometriai paraméterek) II.

- A alapkör átmérő
- B gyűrű átmérő
- C struktúramagasság
- D központi bemélyedés mélysége
- +1 paraméter felületi sűrűség (1 négyzetcentiméterre eső nanostruktúrák száma)

Kvantumpont - Quantum Dot (QD) – csak A és C paramétere van Kvantumgyűrű - Quantum Ring (QR) – mind a négy méret jellemzi, C > D Nanolyuk - Nanohole (NH) – mind a négy méret jellemzi, C < D

Adatbázis szakirodalmi források alapján

Terjedelmes szakirodalom foglalkozik a DE nanostruktúrákkal, számos mű részletesen leírja mind a növesztési folyamatot, mind a folyamattal létrehozott nanostruktúrák geometriai adatait

Egy adatbázist hoztunk létre, amelyben pillanatnyilag 46 adatvektor/rekord található (2023 január)

A "nyers" adatokon végzett többváltozós regresszió

- A függő változót (regresszánst) ("y") a független változók (regresszorok) (" x_i ") lineáris kombinációjával közelítjük
- Nem törvényszerű, hogy az adott többváltozós regresszióban minden független változó hozzájárul a függő változó pontosabb becsléséhez – az is lehetséges, hogy egyik független változó sem járul hozzá

•
$$y = c + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$$

 Minél kisebb a "pValue", annál valószínűbb, hogy az adott regressziós együttható ténylegesen különbözik nullától

Gyakorlati megfontolások

- Csak a kvantumgyűrű és nanolyuk struktúráknak van mind a négy geometriai paramétere, így a B és D paraméterek regresszióit csak ezen struktúrák tekintetében számoljuk
- Az A és C parméterek regresszióit az egész adatbázison kiszámoltuk, valamint külön-külön a kvantumponokra és a kvantumgyűrű/nanolyuk struktúrákra
- Mivel az arzén hátérnyomás és a struktúrasűrűség több decimális nagyságrendet lefed, ezen adatoknak minden esetben a logaritmusát vettük
- A két hőmérséklet mennyiség lineáris korrelációja 0,9 volt, a hőkezelés hőmérsékletét kihagytuk a számításokból (így négy technológiai paraméterünk volt)

Additív modell – többváltozós lineáris regresszió eredményei I (összes nanostruktúra)

"A" dim.	Estimate	SE	pValue
	46.21		0.21
(Intercept)	40.31	30.72	0.21
GrowthT	0.52	0.09	0.00
GallFlux	-29.49	19.01	0.12
AsPress	17.46	10.001	0.08
		1.22	0.01
AnnTime	3.3	1.32	0.01

Additív modell – többváltozós lineáris regresszió eredményei II (kvantumgyűrűk, nanolyukak)

"B" dim.	Estimate	SE	pValue
(Intercept)	-82.78	24.47	0.001
GrowthT	0.26	0.06	0.00008
GallFlux	-25.07	12.67	0.05
AsPress	-9.59	6.66	0.15
AnnTime	0.34	0.88	0.69

Additív modell – többváltozós lineáris regresszió eredményei III (összes nanostruktúra)

"C" dim.	Estimate	SE	pValue
	21 20	ГГО	0.0
(intercept)	31.29	5.58	0.0
GrowthT	0.03	0.01	0.008
GallFlux	-3.68	2.89	0.21
AsPress	6.41	1.52	0.0001
AnnTime	0.81	0.2	0.0002

Additív modell – többváltozós lineáris regresszió eredményei IV (kvantumgyűrűk, nanolyukak)

"D" dim.	Estimate	SE	pValue
(Intercept)	-20.75	8.72	0.02
GrowthT	0.1	0.02	0.00001
GallFlux	2.02	4.51	0.65
AsPress	1.42	2.37	0.55
AnnTime	0.19	0.31	0.54

Milyen jó a modell?

- Az adatbázis valamennyi geometriai paraméterét újraszámoltuk a szignifikáns regressziós együtthatók felhasználásával (egyes számításokban különböző "küszöb" szignifikancia szinteket használtunk pl. 0,1%, 6%, 10% stb.)
- Az adatbázisbeli érték a vízszintes tengelyen olvasható le
- A modell által számított érték a függőleges tengelyen olvasható le
- Az alapkörre vonatkozó diagram látható alább

Milyen jó a modell? II (R=0.76)

Valamennyi adat logaritmusán számolt többváltozós lineáris regresszió

- $\lg y = c + \beta_1 lg x_1 + \beta_2 lg x_2 + \beta_3 lg x_3 + \beta_4 lg x_4$
- Mindkét oldalra felemelve a 10-et, mint hatványalapot
- $y = (10^c) (x_1^{\beta_1}) (x_2^{\beta_2}) (x_3^{\beta_3}) (x_4^{\beta_4})$
- Így egy multiplikatív modellt kaptunk

Multiplikatív (logaritmikus) modell eredményei I

"A" all nanostruct.	Estimate	SE	tStat	pValue
(Intercept)	-4.56	1.23	-3.68	0.00071
GrowthTemp	2/12	0.47	5 11	0 3E-06
Growthenip	2.45	0.47	J.11	9.3L-00
GaFlux	-0.12	0.07	-1.69	0.09
AsPress	0.04	0.03	1.4	0.16
AnnelTime	0.05	0.06	0.78	0.43

Multiplikatív (logaritmikus) modell eredményei II

"B" QRNH	Estimate	SE	tStat	pValue
(Intercept)	-6.09	2.16	-2.82	0.01
GrowthTemp	2.75	0.84	3.25	0.004
GaFlux	-0.28	0.15	-1.9	0.07
AsPress	0.002	0.08	0.03	0.97
AnnealTime	0.04	0.09	0.48	0.63

Multiplikatív (logaritmikus) modell eredményei III

"C" all				
nanostruct.	Estimate	SE	tStat	pValue
(Intercept)	-1.24	1.9	-0.65	0.51
GrowthTemp	0.9	0.73	1.23	0.22
GaFlux	-0.16	0.11	-1.37	0.17
AsPress	0.11	0.05	2.19	0.03
AnnelTime	0.3	0.1	2.85	0.006

MultipliMultiplikatív (logaritmikus) modell eredményei IV

Estimate	SE	tStat	pValue
-11.67	2.53	-4.6	0.0002
4.37	0.99	4.39	0.0003
-0.06	0.17	-0.38	0.7
-0.03	0.09	-0.36	0.71
0.02	0.03	0.20	0.71
	Estimate -11.67 4.37 -0.06 -0.03	Estimate SE -11.67 2.53 4.37 0.99 -0.06 0.17 -0.03 0.09	Estimate SE tStat -11.67 2.53 -4.6 4.37 0.99 4.39 -0.06 0.17 -0.38 -0.03 0.09 -0.36

Következtetés / összefoglalás

Mind az additív, mind a multiplikatív modell elfogadható eredményre vezetett abból a szempontból, hogy a modellekkel számolt méreteket az adatbázisbeli méretekkel összevetve, a pontdiagramokon viszonylag magas lineáris korreláció adódott

R>0.5

Köszönöm megtisztelő figyelmüket!