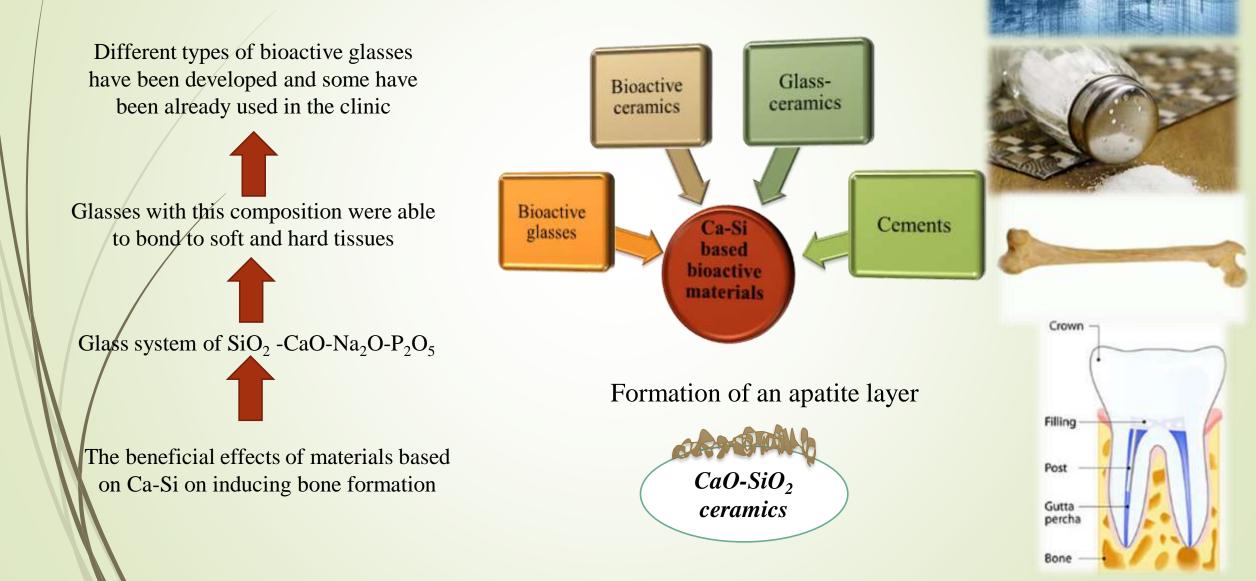
Óbuda University

Doctoral School of Materials Sciences and Technologies

ELKH, Centre for Energy Research, Institute of Technical Physics and Materials Science

Development and structural characterization of calcium silicates porous ceramics


PhD student : Maroua Houria Kaou Supervisors:

Dr. Csaba Balázsi Dr. Katalin Balázsi

2022/2023

Calcium Silicates (CaO-SiO₂)

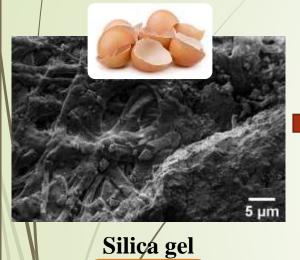
Calcium Silicates (CaO-SiO₂)

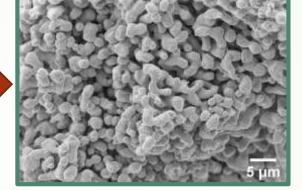
Different parameters can affect and control the biological behaviors

Fabrication method

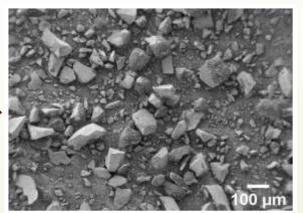
Sintering temperatures

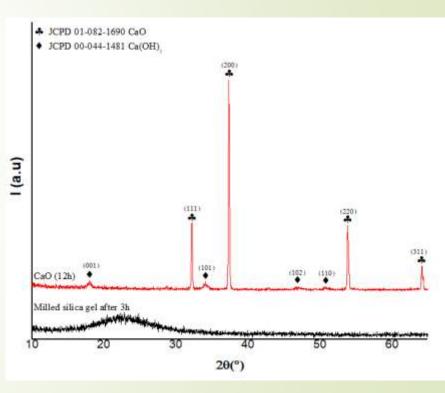
Composition Precursors


Oreen environment synthetic routes

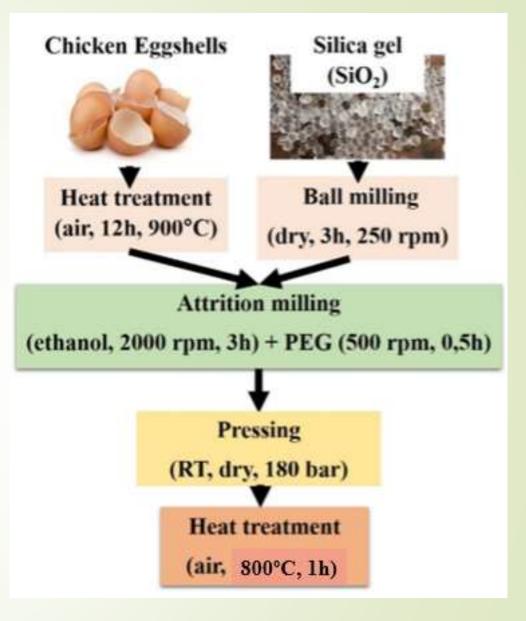

RESULTS 1. preparation of starting materials: milling, heat treatment

Chicken Eggshells

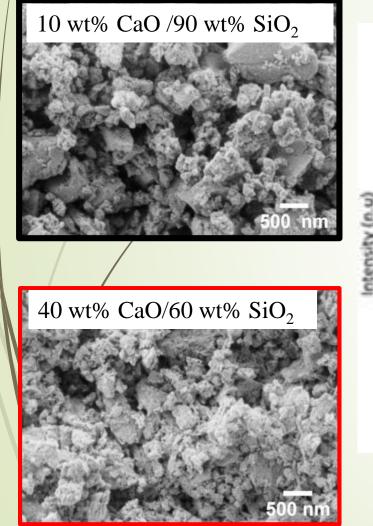


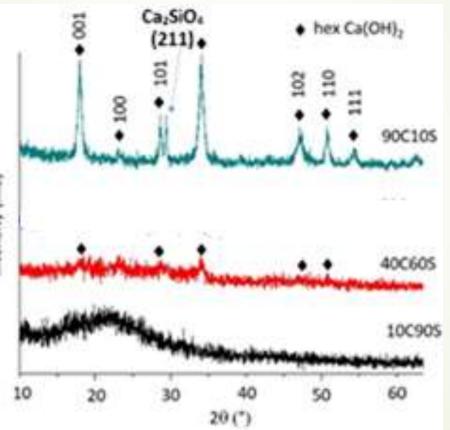

Heat Treatment (12h, 900 °C)

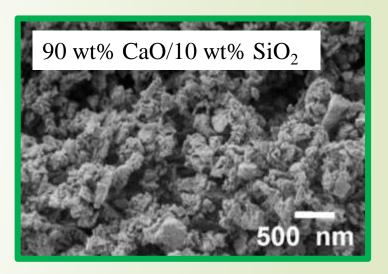
Silica powder


Calcium oxide

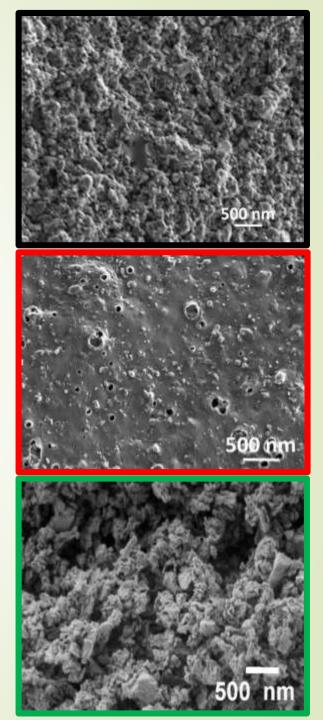
Ball Milling (3h, 10


Composition name	Powder mixtures	CaO (g)	SiO ₂ (g)
40C(7h)60S	40% wt. CaO (7h) + 60% wt. SiO ₂	40	60
10C90S	10% wt. CaO (12h) + 90% wt. SiO ₂	10	90
20C80S	20% wt. CaO (12h) + 80% wt. SiO ₂	20	80
30C70S	30% wt. CaO (12h) + 70% wt. SiO ₂	30	70
40C60S	40% wt. CaO (12h) + 60% wt. SiO ₂	40	60
50C50S	50% wt. CaO (12h) + 50% wt. SiO ₂	50	50
60C40S	60% wt. CaO (12h) + 40% wt. $\rm SiO_2$	60	40
70C30S	70% wt. CaO (12h) + 30% wt. SiO ₂	70	30
80C20S	80% wt. CaO (12h) + 20% wt. SiO ₂	80	20
	90% wt. CaO (12h) + 10% wt. SiO ₂	90	10




M. H. Kaou, Zs E., Horváth ; K, Balázsi ; C, Balázsi, Int. J. Ceram Technol, 2022, in press, 1-11.

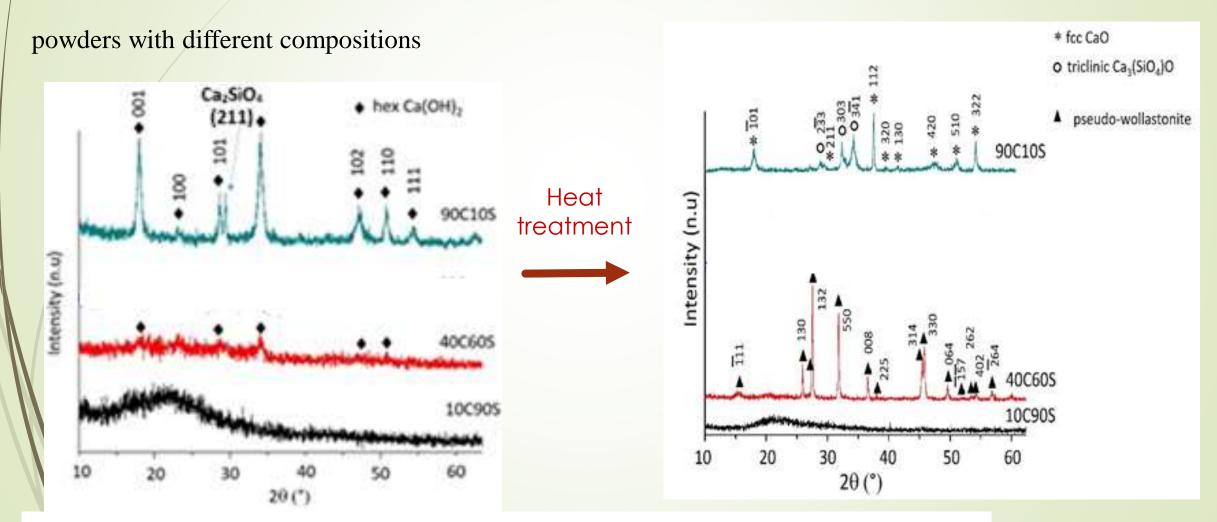
2. Morphological investigations of milled powder mixtures



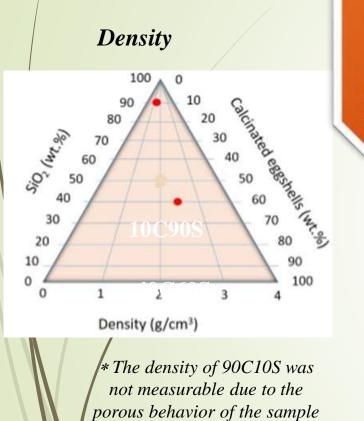
3. Preparation of ceramic discs

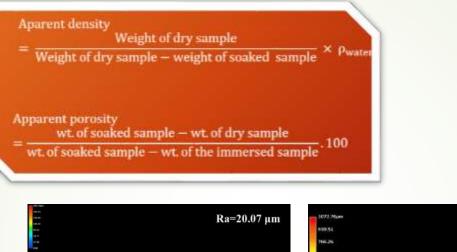
Heat treatment (Air, 800° C, 1h)

Composition name						
Real image	10C90S	20C80S	30C70S	40C60S	50C50S	
of the heat- treated	C			0		
bioceramic	60C40S	70C30S	80C20S	90C10S	40C(7h)60S	
		C	0			



Effect of heat treatment and pressing on powder mixtures


XRD patterns of calcium silica ceramics


pressed and heat-treated ceramics

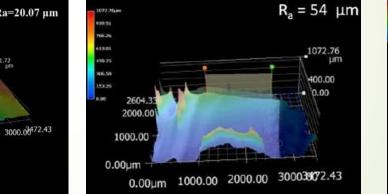
M. H. Kaou, Zs E., Horváth; K, Balázsi; C, Balázsi, Int. J. Ceram Technol, 2022, in press, 1-11.

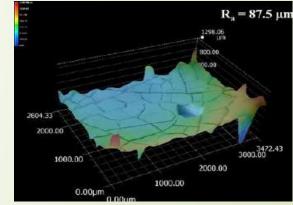
Density and roughness measurements for different compositions

191.72

2000.00

1000.00


2604.33


2000.00

1000.00

0.00µm

0.00µm

Roughness (µm)

90C10S	10C90S	40C60S	
Apparent porosity			
n.m (not measured)	1.509	2.936	

Results

1. <u>Semester:</u>

- 1) Powder technology (Dr. Balázsi C.)
- 2) Biomaterials for medical applications (Dr. Balázsi C.)
- 3. <u>Semester:</u>
- 1) Fracture mechanics (Dr. Kovács T. A)
- 2) Composites (Dr. Klébert Sz.),
- 3) Hungarian II (Dr. Szloboda József Sándorné K.)

<u>Complex Exam:</u> 06/08/2022

2. Semester:

- 1) Transmission electron microscopy for structural investigations of different materials (Dr. Balázsi K.)
- 2) Selected chapters of material testing methods I. (Dr. Takács E, Dr. Judit Telegdi)
- 3) Hungarian I (Dr. Szloboda József Sándorné K.)

4. <u>Semester:</u>

- 1) Cellulose chemistry (Dr. Borsa Judit)
- 2) Synthetic fibres and technical textiles (Dr. Borsa Judit)

Selected chapters of material testing methods I. (Dr. Takács E, Dr. Judit Telegdi)
Cellulose chemistry (Dr. Borsa Judit)

Presentations and publications

Publications:

[1] Kaou M. H., Horváth Z. E., Balázsi K., Balázsi C. Eco-friendly preparation and structural characterization of calcium silicates derived from eggshell and silica gel. Int. J. Appl. Ceram. Technol. 2022; 1-11. https://doi.org/10.1111/ijac.14274

Conferences:

1) Participated in [Virtual] European Congress and Exhibition On Advanced Materials and Progress -(EUROMAT 2021), September 12-16 (Poster).

- 2) Participated in [Virtual] 46th international Conference and Exposition on Advanced Ceramics and Composites (ICACC 2022), January 23-28 (Poster).
- 3) Participated in Ceramics In Europe (ECerS 2022) conference, July 10-14 (Poster). ICC9
- 4) Participated in [Virtual] ACerS Pan American Ceramics Congress (PACC-FMAs 2022), July 24-28 (Poster).

ELECTRO CERAMICS

Research Plan

Next steps for 2023:

- ✓ Continuing the preparation and sintering of the samples using Spark Plasma Sintering (SPS).
- Conducting mechanical testing (hardness, tribology, bending tests)
- ✓ **Testing the biological characteristics of all samples** in SBF solution.
- **2** manuscripts currently are in the process of writing.

Köszönöm szépen a figyelmet!

Thank you for your attention!