MIKRO- ÉS NANORÉTEGEK KÉSZÍTÉSE ÉS JELLEMZÉSE

Az előadás vázlata

Rétegek:

- Mikrorétegek: bevonatok, festékek, galvanizálás, kémiai és elektromos réteg-leválasztás
- Nanorétegek, molekuláris filmek
 - Termál szórás
 - Plazma kezelés
 - "Dipp-coating", "spin-coating"
 - Langmuir-Blodgett film
 - Önszerveződött molekuláris rétegek
- A rétegek jellemzése különböző technikákkal
 A rétegek alkalmazása

Történelmi áttekintés

•Idősebb Plinius (Gaius Plinius Secundus), AD 23-79 : "that all sea water is made smooth by oil, and so divers sprinkle oil on their face because it calms the rough element and carries light down with them"; . . . *Historia Naturalis*.

- Benjamin Franklin: . . . where the waves began to form, and there the oil, though not more than a teaspoonful, produced an instant calm, . . . perhaps half an acre as smooth as a looking glass"; *Phil. Trans. Roy. Soc.* (1774), *64*, 445.
- Lord Rayleigh: "The earlier part of Miss Pockels' letter covers nearly the same ground as some of my own recent work, ..., raising many important questions. I hope soon to find opportunity for repeating some of Miss Pockels' experiment"
- Agnes Pockels: "MY LORD-Will you kindly excuse my venturing to trouble you with German letter on a scientific subject?...; *Nature* (1891) *43*, 437.
- Irving Langmuir: "The constitution and fundamental properties of solids & liquids. II

Liquids"; J. Am. Chem. Soc. (1917) 39, 1848.

A felszíni atomok számának alakulása

Az egység Au cella mérete:~ 0.4 nm

Össz-atomszám ~ 5.9×10²² Felszíni atomok száma ~ 1.2×10¹⁵

A felszíni atomok száma ~ 2×10⁻⁶ % az össz-atomhoz viszonyítva Össz-atomszám ~ 108 Felszíni atomok száma ~ 84

A felszíni atomok száma ~ 78% az összatomhoz viszonyítva

A nanorétegek jellmézésére leggyakrabban alkalmazott módszerek

kontakt szög: tenziometer

- összegfrekvenciakeltési spektroszkópia (SFG), IR spektroszkópia
- A XPS
- ellipszométer
- AFM, epifluoreszcens mikroszkópia
- elektrokémiai módszerek (EIS, polarizációs mérések, ciklikus voltammetria)
- 🚓 microkalorimetria

Statikus és dinamikus kontaktszög mérés

Atomi erőmikroszkóp (AFM)

LB filmmérleg, BAM

A Langmuir filmmérleg működése, LB filmkészítés

mono- és multi-réteg

átvitel

A réteg stabil
 Megőrzi rendezett szerkezetét
 kevés hibahely
 A réteget befolyásolja:

 * a szubfázis
 (pH, dissolved molecules)

rétegátvitel körülményei

LB technika

két különböző közeg határfelületén kialakított oldhatatlan monomolekulás filmek

a víz felületi feszültségét csökkentik és oldalnyomást fejtenek ki

a felületaktív anyag molekulái irányítottan helyezkednek el:

П – A izoterma

a görbe alakja jellemző a filmet felépítő molekulákra és ezek kölcsönhatására

Kollapszus

az adott filmre jellemző érték a film elveszti monomolekulás jellegét: törik, gyűrődik

Langmuir filmek szilárd hordozón

Hidrofőb felszín

Hidrofil felszín

Multimolekulás rétegek: váltakozó irányítottság

Az önszerveződés lehetőségei

- Önszerveződött molekuláris rétegek (SAM)
 Önszerveződött makromolekuláris szerveződések szilárd hordozón
- Poliionok "Layer-by-layer" rétegződése
- Önszerveződött diblokk polimerek
- Önszerveződött makromolekulák

Az önszerveződés alkalmazási lehetőségei

Integrált áramkörök Katalizátorok Adattárolás Gyógyszerbevitel Bioanyagok Nanorészecskék, funkcionalizált nanorészecskék Mikrofluidika Elválasztás és tisztítás

Az önszerveződés "mozgatórugója"

• **Statikus rendeződés** (termodinamikailag szabadenergia-minimum) – ha egyszer kialakult, stabil

• **Dinamikus rendeződés** (kinetikailag képződik, nincs feltétlenül a termodinamikai minimumon) – nem szükségszerűen stabil

Önszerveződött molekuláris szerkezetek

- A legkülönbözőbb hordozókon kialakíthatók
- A "bottom up" és a "top down" technika kombinálásával előre meghatározott felszínek hozhatók létre
- Óriási hatása van új termékek kifejlesztésére

Alkántiol SAM rétegnövekedés

(a): gázból vagy kis koncentrációjúoldatból(b): koncentráltabb oldatból

Önszerveződés aranyon

X = -CH3, -OH, -COOH, -SO3-, -PO4H2, N+(CH3)3, -(OCH2CH2)nOH, ...

Az LB és az Az LB és az önszerveződő technika összehasonlítása

technika		
	előny	hátrány
LB	 egyszerű és gyors rétegszám és szerkezet megválasztható az LB-vel borított szilárd felszín stabil 	 berendezés szükséges
SAM	 egyszerű, spontán stabil felszín a felületi jellemzők (kémiai, mechanikai)előre meghatározhatók nincs szükség speciális berendezésre 	 a réteg kialakulása időigényes

Az LB és a SAM rétegek szerkezetének összehasonlítása

LB:egyenletes, rendezett réteg

AFM, C18N rézen (10x10m⁻¹⁰)

SAM: defektek, lukak

STM, C10SH SAM (250x250m⁻¹⁰)

Amfifil hidroxám- és foszfonsavak

Hidroxámsavak

Sztearoil - hidroxámsav C18N

Foszfonsavak

1– foszfono - oktadekán C18P

Izotermák és Bam felvételek; a pH hatása

Az LB és a SAM réteg morfológiájának összehasonlítása

LB rétegekkel borított réz és vas felszín

Kétdimenziós Fourier transzformációs

A 2D elemi cella méretei: a = 0.443 ± 0.05 nm b = 0.335 ± 0.04 nm γ = 103 ± 0.5°

 Az LB egyréteg kétdimenziós térbeli elrendeződése ferde rácsnak felel meg
 Anyagtudományi Szeminárium 2014. 04. 14.

LB rétegek rézen és vason

XPS mérésből számított rétegparaméterek

vason	Rétegvastagság [nm]			rézen	Rétegvastagság [nm]			
	nincs LB réteg	C18P monoréteg	C18N monoréteg		nincs LB réteg	C18P monoréteg	C18N monoréteg	
Alkil lánc	-	1.9-2.1	1.9-2.1	Alkil lánc	-	2.0-2.2	2.0-2.1	
Fej- csoport	-	0.27-0.31	0.33-0.38	Fej- csoport	-	0.3-0.35	0.3-0.34	
vasoxid	3.3-3.5	3.4-3.5	3.4-3.5	Rézoxid	3.5-4.0	3.9-4.0	3.5-3.7	

SFG spektrumok

LB rétegek, fejcsoport függés

SAM rétegek, időfüggés

LB filmek vason és rézen, polarizációs mérések

Önszerveződött rétegek rézen

polarizációs kísérlet, (Na₂SO₄, pH=3)

C16N-SAM

 $-\Delta$ - C12N-SAM

-*- C10N-SAM

copper	E _{korr} / [mV]	j _{korr} / [µA.cm⁻²]	η [%]
blank	- 26	0,91	-
C18N SAM	-40	0,14	85
C16N SAM	-39	0,16	82
C12N SAM	-38	0,17	81
C10N SAM	-36	0,13	76

A SAM réteg kialakulási idejének hatása (EIS) Cu+C10N (0,5 M Na₂SO₄ ; 25°C)

Rézen SAM réteg időfüggő keletkezésének vizsgálata mikrokaloriméterrel (0.1MHNO₃; 20oC)

SAM réteg keletkezési idő:	5 min		15 min		30 min		60 min	
	[µW]	η [%]	[µW]	η [%]	[µW]	η [%]	[µW]	η [%]
Cu + C10N	570	37	460	49	200	78	186	79
Cu + C12N	580	36	338	63	190	79	189	80
Cu + C16N	-	-	-	-	-	-	262	82
Cu + C18N	-	-	-	-	-	-	110	88

 $Cu:910\;\mu W$

SAM réteg hatása a lyukkorrózióra

2.00

-1.00

2.00

1116

C10N bevonat 60 óra után

Bevonat nélkül 20min után

Vas hűtővízben, 5 nap után

A nanorétegek hatása mikroorganizmusok megtelepedésére

C18N LB réteg: néhány kis telep

Réteg nélkül: vastag biofilm

Korróziógátlás nanorétegekkel

LB rétegek antikorróziós és mikróba megtapadást gátló hatása

Összefüggés a felületi energia és a megtapadt mikroorganizmusok száma között

	felületi energia [ergscm ⁻²]	mikroorganizmusok a biofilmben [sejtcm ⁻²]
vas	62.99	$5.2 \times 10^5 \longrightarrow$
+C18N LB egyréteg	25.06	3.6x10 ³ →
+C18P LB egyréteg	42.39	1,6x10 ⁵
réz	56.67	1,2x10⁵ →
+C18N LB egyréteg	25.66	6,8x10 ²
+C18N LB többréteg	21.28	1,7x10 ²

A C18N molekulából kialakított Langmluir rétegek izotermái és BAM képei

Anyagtudományi Szeminárium 2014. 04. 14.

Figure 2. Pressure-area isotherms of C₁₈N at pH=4 on different subphases

Fémionok LB rétegekben

elektród	i [µA cm ⁻²]	hatékonyság [%]
Cu	0.91	
Cu + C18N	0.25	73
Cu + C18N + Ca ²⁺	0.19	77
Cu + C18N + Mg ²⁺	0.10	85
Cu + C18N + Cu ²⁺	0.06	97

Amfifil anyagok

Monomolekuláris rétegek jellemzése izotermákkal

Anyagtudomanyı szeminanom 2014. 04. 14.

Összegfrekvencia vibrációs spektroszkópia (SFG)

palmitinsav

sztearinsav

elaidinsav

olajsav

A rétegek hatékonysága korrozív közegben (15 h; 0,5 M NaCl)

Koncentráció függő LB rétegek készítése

a: 10-5M; b: 10-6M

Izotermák és BAM képek

Biomembrán kettősrétegének utánzása

Lipáz a SAM rétegben

levegő

Anyagbeépülés a vizes fázisból

Biomembrán modell: A kitozán és a koleszterol

hatása a dimirisztoil foszfatidinre

70 % DMPA - 0 - 20 50 80 100 0 100 120 80 140 160 20 40 60 Molecular area (Å²)

Szubfázis: puffer

Szubfázis: kitozán

Nanorészecskék LB rétegben

Nanorészecskék: 24.9 nm NaYF₄:Yb,Er nanogömb, 12.0 nm LiYF₄ nanopolyhedra, 14.1 × 1.8 nm triagonal-shaped LaF₃, 12.6 nm square CaF₂, 9.5 × 2.0 nm hexagonal EuF₃,

Fontos: koncentráció méret szimmetria

SAM réteg kialakulása

Molekulák SAM-ben

Si, Al: leggyakrabban alkalmazott hordozó

tribológia, súrlódás

Molekulák SAM-ben

Dithiol Mixed Self-assembled Monolayer

Amfifil molekulák a levegő-víz határfelületen Bizonyíték a molekulák rendezettségére (1937)

SFG spektrumok

LB rétegek, fejcsoport függés

SAM rétegek, időfüggés

Ideális és nem ideális SAM képődés

SAM rétegben a molekulák visszahajlásának lehetősége

A SAM lehetséges alkalmazásai

- A) Biolerakódás gátlás
- B) SAM specifikus receptor kötőhelyek
- C) Natív sejtszaporodás, megfigyelés
- D) Molekuláris elektronika
- E) Mikroberendezések
- F) Elválasztás

Önszerveződött makromolekuláris szerveződések szilárd hordozón

Poliionok elektrosztatikus önszerveződése

Alkalmalzási lehetőségek •Bioszenzorok •Szelektív membránok •Katalitikus filmek •Bevonatok

SAM:Elektrosztatikus önszerveződés nanorészecskéken

Diameter:

300 nm

Szénnanocsőből kialakított szenzor

Önszerveződött diblock polimerek

TEM felvételek: polisztirolpolibutadién diblockpolimerekből készült maszk (a,c) és litográfiával módosított szilicium nitrid (b,d).

Önszerveződött makromolekulák

Önszerveződött, dupla rozettás szupermolekulaszerkezet barbituráttal és melaminnal kölcsönhatva

SAM réteg változása fény hatására

Hidrolízises reakció foszfolipid SAM-ot tartalmazó szilika részecskén

Reakció önszerveződött rétegen

STM felvétel SAM-ról működés közben

STM képek: (a) diacil 2,6-diaminopiridin (DAP) dekántiol kapcsolóval, dekántiol monomonorétegben. (b)a komplementer elektroaktív Fc-uracil kapcsolása után (c) az electroaktív guest molekula helyettesítve izoláló dodecil funkcionalizált uracillal.

Tiol-linkerrel Au NP-hez kötött foszfolipid monoréteg

Anyagtudományi Szeminárium 2014. 04. 14.

Fotolitográfiával módosított felszínek

Au nanorészecskék (3merkaptopropil)trimetoxi szilán monoréteggel módisított SiO₂-vel borított Sion (SEM)

3-rétegű nanorészecskékkel borított felszín fotoátalakítás után (AFM kép;80 mm x 80 mm)
Nanorétegek, szilárd felszínek, molekulák

Туре	Molecules	Substrates	
Langmuir – Blodget	Alkyl-acids (R-COOH)	metal-oxides, Al ₂ O ₃ , AgO	
	others	Any polar or ionic surface	
	Thiols (R-SH)	Au, Ag, Cu (sans oxyde)	
Self Assembly	Phosphonates (R-PO ₃ H)	Ta ₂ O ₅ ; TiO ₂ ; Al ₂ O ₃ ;?	
	Silanes (R-SiX ₃)	Any substrate	
Silanisation	Silanes (R-SiX ₃ ; R-R ₂ -SiX)	silica hydrated, other oxides	

Anyagtudományi Szeminárium 2014. 04. 14.

Önszerveződött csövek, gömbök peptidekből, hidrofil-hidrofób molekulák kölcsönhatásával

Köszönöm figyelmüket

Anyagtudományi Szeminárium 2014. 04. 14.

A nanorétegek termikus stabilitása

SAM type	Bonding type	Energy
Langmuir- Blodgett	ionic, electrostatic	0.52 eV = 50 kJ/Mol
Self Assembly R-SH on gold	Covalent, d-d	1.87 eV = 177 kJ/Mol
Silanization	Covalent (Si-O) Covalent (Si-C)	4.59 eV = 443 kJ/Mol 3.17 eV = 306 kJ/Mol

Anyagtudományi Szeminárium 2014. 04. 14.