ÓBUDAI EGYETEM ANYAGTUDOMÁNYI SZEMINÁRIUMOK, 2014. JÚNIUS 2.

PEKKER SÁNDOR MTA WIGNER SZFI

KONJUGÁLT KÖTÉSŰ POLIMEREK ÉS SZÉN-NANOSZERKEZETEK *I. FULLERÉNEK*

2. rész: A fullerének szerkezete és tulajdonságai

Áttekintés

A fullerének szerkezete és tulajdonságai

- Molekulaszerkezet
- Ionos, kovalens és szupramolekuláris származékok
- Alkálifém-fulleridek
- Polimerek
- Kokristályok
- Topokémiai reakciók

A C₆₀ molekula szerkezete

60 sp² C, 12 ötszög, 20 hatszög, csonka ikozaéder, I_h

R=3.5 Å r(5,6)=1.46 Å r(6,6)=1.40 Å

gyengén konjugált π -elektron rendszer: kinoidális szerkezet és tulajdonságok \rightarrow nagy reakcióképesség

A C₆₀ elektronszerkezete, MO modell

A C₆₀ elektronszerkezete, MO modell

A C₆₀ szupramolekuláris sajátosságai

a C₆₀ van der Waals kontúrja: Lennard-Jones centrumok: 60 C atom

a C₆₀ π-elektron kontúrja: Lennard-Jones centrumok: 30 C=C kötés

A C₆₀ molekula térbeli kiterjedése

Szuperponált van der Waals és π -elektron kontúrok Lennard-Jones centrumok: 60 C atom + 30 C=C kötés

sima molekulafelszín erős szupramolekuláris kölcsönhatások a C=C kötéscentrumoknál → összhangban a kristályszerkezettel

A C₆₀ KRISTÁLYSZERKEZETE

Fm3m, a=14.15Å

Molekulakristály

- Röntgendiffrakció
- •Szilárd fázisú ¹³C-NMR spektroszkópia
- Neutrondiffrakció
- •Kalorimetria
- Optikai spektroszkópia
- •Elméleti számolások

A C₆₀ KRISTÁLYSZERKEZETE

Fm3m, a=14.15Å lapcentrált köbös David et al. (1992) neutrondiffrakció

T>260K: plasztikus kristály fázis: → szabadon forgó molekulák → jellegzetes szilárdtestkémia T=260K: fcc → sc (Fm3m → Pa3) fázisátalakulás

A C₆₀ KRISTÁLYSZERKEZETE

David et al. (1992) neutrondiffrakció

Pa3, a=14.09Å egyszerű köbös

90K<T<260K: orientációsan rendezett fázis → a molekulák gátolt forgása → csökkent szilárdtestkémiai aktivitás T<90K: befagyott forgás, orientációs üveg

A C₆₀ reakciói és származékai

M_xC₆₀ FULLERIDEK ÉRINTKEZŐ GÖMB MODELLJE

x = 1, 2, 1+2,

x = 4, 2?, (4+2)?,

bct (c<a)

fcc

x = (4+2), -(8+2),

bcc

(2+2) CIKLOADDÍCIÓS FULLERÉN POLIMEREK

Polimerizáció: Rao et al. 1993, Iwasa et al. 1994, Nunez-Regueiro et al. 1995

lineáris

Dimerizáció: Wang et al. 1997 Iwasa et al. 1998

tetragonális

romboéderes

FULLERID POLIANIONOK A_xC₆₀ SÓKBAN

 AC_{60} (A= K, Rb, Cs)

Pekker et al. 1994 Stephens et al. 1994

Oszlányi et al. 1996

 Na_4C_{60} Oszlányi et al. 1997

Bendele et al. 1998

Na₂RbC₆₀

A C₆₀ FOTOPOLIMERIZÁCIÓJA

Rao et al. 1993

oldhatatlan film

Javasolt reakció: (2+2) cilkoaddíció Röntgen: fcc, ∆a~-0.1Å →ellentmondás a modellel

Az AC₆₀ sók polimer jellegének felismerése

Pekker et al. 1994

bco

b

Stephens et al. 1994 Rietveld analízis: szerkezetigazolás

Chauvet et al. 1994

A C₆₀ dimerizációjának mechanizmusa

(2+2) cikloaddíció

A C₆₀ DIMERIZÁCIÓ AKTIVÁLÁSI ENERGIÁJA

K₁C₆₀ polimorf fázisok termodinamikai stabilitása

K₁C₆₀ polimorf fázisok Monomer-dimer-polimer fázisdiagram

Első modell, Pekker S. 1994. február POLYMORPHISM OF (C60)n ANIONS IN A1C60 COMPOUNDS (A = K, Rb, Cs)

GYÖKANIONOK REKOMBINÁCIÓJA A1C60- FULLERIDEKBEN

³(C₆₀-C₆₀) kovalens kötésű dimer molekula paramágneses, biradikális, nem stabil

¹(C₆₀-C₆₀)²⁻ kovalens kötésű dimer anion diamágneses

K₁C₆₀ POLIMER SZÁLAK

Pekker S. et al. Science, 1994

M. Carrard et al. Synth. Met. 1996

A C₆₀ FOTOPOLIMER KRISTÁLYSZERKEZETE

fcc, a = 13.90-14.05 Å

A C₆₀ FOTOPOLIMER FELDOLGOZÁSA

HPLC készülék

Frakciószedő

(C₆₀)_n OLIGOMEREK SZÉTVÁLASZTÁSA HPLC-VEL

C₆₀ FOTO-TRIMEREK ÉS -TETRAMEREK

C₆₀ FOTO-TRIMEREK KÉPZŐDÉSÉNEK TOPOKÉMIAI FELTÉTELEI

	Középponti szög / fok							
Szerkezeti adottságok	36	60	72	90	108	120	144	180
Sztérikus feltételek		60	72	90	108	120	144	180
Topokémiai feltételek		60		90		120		180

NAGYOBB FOTO-OLIGOMEREK KÉPZŐDÉSÉNEK TOPOKÉMIAI FELTÉTELEI

Csak lineáris, vagy síkaklatú oligomerek képződhetnek, Csak azonos standard orientációjú oligomerek kapcsolódnak össze → az átlagos polimerizációfok mindig kicsi marad

NAGYOBB FOTO-OLIGOMEREK KÉPZŐDÉSÉNEK TOPOKÉMIAI FELTÉTELEI

Csak lineáris, vagy síkaklatú oligomerek képződhetnek, Csak azonos standard orientációjú oligomerek kapcsolódnak össze → az átlagos polimerizációfok mindig kicsi marad

NAGYOBB FOTO-OLIGOMEREK KÉPZŐDÉSÉNEK TOPOKÉMIAI FELTÉTELEI

Csak lineáris, vagy síkaklatú oligomerek képződhetnek, Csak azonos standard orientációjú oligomerek kapcsolódnak össze → az átlagos polimerizációfok mindig kicsi marad

TRIMEREK MENNYISÉGI ELOSZLÁSA

A HÁROMSZÖG TRIMEREK KÉPZŐDÉSE

FELTÉTELEZETT MECHANIZMUS:

- (4 + 4) cikloaddíció
- fotokémiai út
- 1 lépéses
- 8 centrumos reakció !!!
 - kedvező topokémiai feltételek

FULLERÉN KOKRISTÁLYOK: MOLEKULÁRIS LEGO

Nagy szimmetriájú fullerén gazdaszerkezetek: eltérő mértékben érintkező gömbök eltérő nagyságú és szimmetriájú üregek

lapcentrált köbös

önmagában is stabil

rombos

primitív hexagonális

primitív köbös

instabil, vendégmolekulák stabilizálják

FULLERÉN-KUBÁN KOKRISTÁLYOK

Motiváció

A C₆₀-KUBÁN KRISTÁLYSZERKEZETE

S. Pekker et al. Nature Materials, 2005

A legmagasabb szimmetriájú kokristály

Kitágult rács: nem gazda-vendég rendszer Forgó fullerének: orientációsan nem rendezett Álló kubán:

nem plasztikus kristály

 \rightarrow rotor-sztátor fázis

Kémiailag reaktív komponensek: magas hőmérsékleten polimerizál

Kősó típus, a=14.74Å

ISMERT FULLERÉN-KUBÁN KOKRISTÁLYOK SZERKEZETE

Anyag	Szerkezet	Rácsállandók		
C ₆₀ C ₈ H ₈	kősó	a=14.74 Å		
C ₇₀ C ₈ H ₈ at T>375K	kősó	a=15.38 Å		
C ₇₀ C ₈ H ₈	tetragonális	a=10.61 Å, c=16.01 Å		
C ₇₆ C ₈ H ₈	nikkel-arzenid	a=11.15 Å, c=17.91 Å		
C ₈₄ C ₈ H ₈	kősó	a=16.07 Å		
$C_{60}C_8H_6(C_2H)_2$	romboéderes	$a_{\rm H}$ =11.63 Å, $c_{\rm H}$ =22.24 Å		

TIPIKUS ROTOR-SZTÁTOR SZERKEZETEK

tetragonális

hcp

rombohéderes

FULLERÉN-KUBÁN KRISTÁLYOK SZUPRAMOLEKULÁRIS ÉPÍTŐEGYSÉGEI

 $D_{full}+D_{cub}>\sqrt{2} D_{full}$

oktaéderes koordinációjú kubán illeszkedés-kontroll, molekuláris felismerés

oktaéderes koordinációjú fullerén molekuláris csapágy

A MOLEKULÁRIS CSAPÁGY HATÁSA: AZ ORIENTÁCIÓS RENDEZŐDÉS HŐMÉRSÉKLETE LECSÖKKENT

oktaéderes koordinációjú fullerén

molekuláris csapágy: eltávolodott fullerének inkommenzurábilis atomi elrendeződés → könnyű forgás

G. Bortel et al. Phys. Stat. Sol. B, 2006

por-Röntgen-diffrakciós mérés

 \rightarrow \rightarrow az összes fullerén-származék között a legalacsonyabb T_c

A C₇₀-KUBÁN KRISTÁLYSZERKEZETE SZOBAHŐMÉRSÉKLETEN

S. Pekker et al. Nature Materials, 2005 G. Bortel et al. Phys. Stat. Sol. B, 2006

tetragonális, a=10.61Å, c=16.01Å

egytengelyű forgás C₅ körül precesszió c körül

optimálisan illeszkedő felületek

HASONLÓ SZERKEZETŰ KOKRISTÁLYOK

E. M. Veen et al. Chem. Commun. 1999

C₆₀-azatripticén: komplementer felületek 2D illeszkedése orientációs rendezetlenség ismeretlen dinamika

B. Kräutler et al. Angew. Chem. 1996

C₆₀-(C₆₀-bisantracén): felületek 1D illeszkedése topokémiai képződés hajtóerő:

a C₆₀ forgása

TOPOKÉMIAI REAKCIÓK

egykristály –egykristály átalakulás

topotaktikus: reakciózóna, ∆F≈0

egyfázisú: reakcióüreg, ∆V≈0

TOPOKÉMIAI KOPOLIMERIZÁCIÓ FULLERÉN-KUBÁN KRISTÁLYOKBAN

Kémiai reakció 150-200°C-on: C₆₀C₈H₈, C₇₀C₈H₈, C₆₀C₁₂H₈:

IR: kubán csúcsok eltűnnek, fullerén csúcsok felhasadnak TG-MS: nincs tömegvesztés HPLC: új fullerén-származékok csúcsai csökkenő oldékonyság: polimerizáció

Topokémiai jellegzetességek:

XRD: a rácsállandó alig változik nincs fázisátalakulás, az amorf háttér nő

egyfázisú reakció

Mikroszkóp: az egykristályok túlélik az átalakulást Részleges bomlás 400-500°C-on:

TG-MS: 2-4% szénhidrogén felszabadulás

maradék: >99% tiszta szén

XRD: amorf

Mikroszkóp: sötétedett, de a kristályos küllem megmaradt UV-VIS: fullerén csúcsok felismerhetők

A RÖNTGEN DIFFRAKTOGRAM VÁLTOZÁSA A C₆₀-KUBÁN POLIMERIZÁCIÓJ<u>A SORÁN</u>

C₆₀-KUBÁN KRISTÁLYOK TRANSZMISSZIÓS ÉS REFLEXIÓS OPTIKAI MIKROSZKÓPOS KÉPEI

rotor-sztator kristályok 250 °C-on képződött kopolimer 600 °C-on hőkezelt minta, 'amorf szén'

C₆₀-KUBÁN KRISTÁLYOK **UV-VIS OPTIKAI SPEKTRUMAI**

600 °C-on hőkezelt minta, 'amorf szén'

250 °C-on képződött

rotor-sztátor kristályok

A KUBÁN TERMIKUS BOMLÁSÁNAK EGYSZERŰSÍTETT ENERGIADIAGRAMJA

H. D. Martin et al., J. Chem. Soc. Chem. Commun. 1985

LEHETSÉGES C₆₀-KUBÁN-C₆₀ VEGYÜLETEK

A KUBÁN TOPOKÉMIAI REAKCIÓJA ELSŐ SZOMSZÉD C₆₀-AKKAL

A KUBÁN TOPOKÉMIAI REAKCIÓJA ELSŐ SZOMSZÉD C₆₀-AKKAL

A KUBÁN TOPOKÉMIAI REAKCIÓJA MÁSODSZOMSZÉD C₆₀-AKKAL

14.7-15.0Å

A KUBÁN TOPOKÉMIAI REAKCIÓJA MÁSODSZOMSZÉD C₆₀-AKKAL

reakciófok:0

reakciófok : 0.1

reakciófok : 0.3

reakciófok: 0.6

reakciófok: 1

A JAVASOLT C₆₀-KUBÁN KOPOLIMER SEMATIKUS SZERKEZETE

négy egymáson áthatoló perkolációs hálózat orientációs üveg