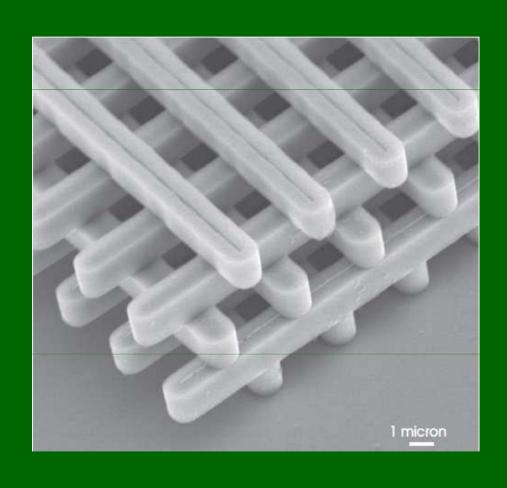
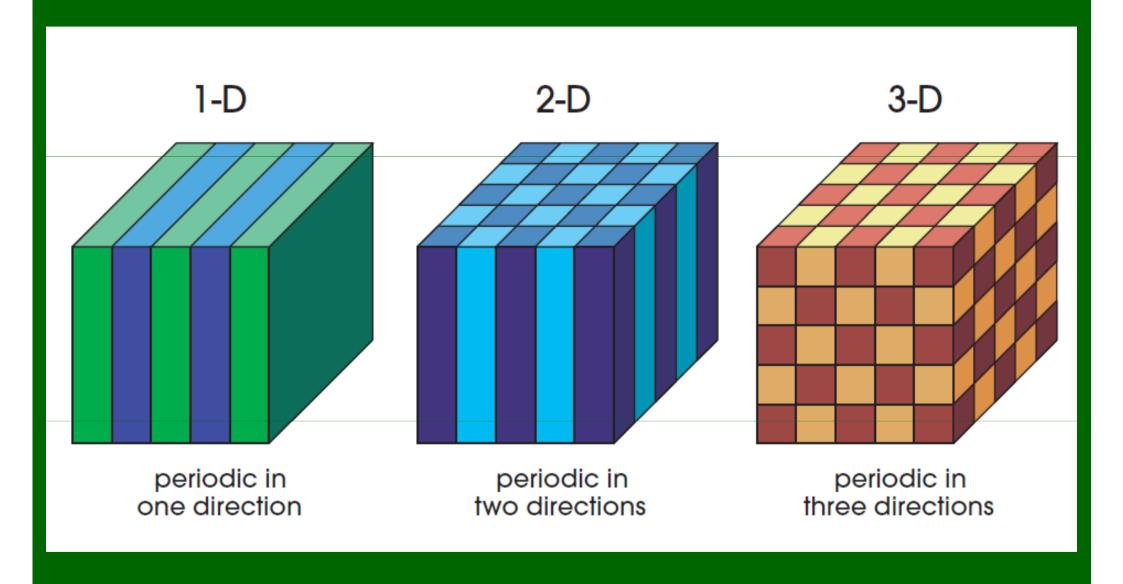
"Photonic crystals"



Composition and dimensionality of photonic crystals



$$\nabla \cdot \mathbf{B} = 0 \quad \nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0$$

$$\nabla \cdot \mathbf{B} = 0 \quad \nabla \times \mathbf{E} + \frac{\partial}{\partial t} = 0$$

$$\nabla \cdot \mathbf{D} = \rho \quad \nabla \times \mathbf{H} - \frac{\partial \mathbf{D}}{\partial t} = \mathbf{I}$$

$$\mathbf{D}(\mathbf{r}) = \varepsilon_0 \varepsilon(\mathbf{r}) \mathbf{E}(\mathbf{r})$$

$$\mathbf{B}(\mathbf{r}) = \mu_0 \mu(\mathbf{r}) \mathbf{H}(\mathbf{r})$$

$$\mathbf{B} = \mu_0 \mathbf{H}$$

$$\nabla \cdot \mathbf{H}(\mathbf{r},t) = 0 \qquad \nabla \times \mathbf{E}(\mathbf{r},t) + \mu_0 \frac{\partial \mathbf{H}(\mathbf{r},t)}{\partial t} = 0$$

$$\nabla \cdot [\varepsilon(\mathbf{r})\mathbf{E}(\mathbf{r},t)] = 0 \quad \nabla \times \mathbf{H}(\mathbf{r},t) - \varepsilon_0 \varepsilon(\mathbf{r}) \frac{\partial \mathbf{E}(\mathbf{r},t)}{\partial t} = 0.$$

$$\mathbf{H}(\mathbf{r},t) = \mathbf{H}(\mathbf{r})e^{-i\omega t}$$

$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}(\mathbf{r})e^{-i\omega t}$$
.

$$\nabla \cdot \mathbf{H}(\mathbf{r}) = 0, \quad \nabla \cdot [\varepsilon(\mathbf{r})\mathbf{E}(\mathbf{r})] = 0,$$

$$\nabla \times \mathbf{E}(\mathbf{r}) - i\omega \mu_0 \mathbf{H}(\mathbf{r}) = 0$$

$$\nabla \times \mathbf{H}(\mathbf{r}) + i\omega \varepsilon_0 \varepsilon(\mathbf{r}) \mathbf{E}(\mathbf{r}) = 0.$$

$$\nabla \times \left(\frac{1}{\epsilon(\mathbf{r})} \nabla \times \mathbf{H}(\mathbf{r})\right) = \left(\frac{\omega}{c}\right)^2 \mathbf{H}(\mathbf{r}).$$

$$\mathbf{E}(\mathbf{r}) = \frac{{}^{t}}{\omega \varepsilon_{0} \varepsilon(\mathbf{r})} \nabla \times \mathbf{H}(\mathbf{r}).$$

$$\hat{\Theta}\mathbf{H}(\mathbf{r}) = \left(\frac{\omega}{c}\right)^2 \mathbf{H}(\mathbf{r}).$$

$$\widehat{\Theta}\mathbf{H}(\mathbf{r}) \triangleq \nabla \times \left(\frac{1}{\varepsilon(\mathbf{r})} \nabla \times \mathbf{H}(\mathbf{r})\right)$$

Quantum Mechanics

$$\Psi(\mathbf{r},t) = \Psi(\mathbf{r})e^{-iEt/\hbar}$$

Field

$$\hat{H}\Psi = E\Psi$$

Eigenvalue problem

Hermitian operator

$$H = -\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r})$$

$$\Theta \mathbf{H} = (\frac{\omega}{c})^2 \mathbf{H}$$

 $\mathbf{H}(\mathbf{r},t) = \mathbf{H}(\mathbf{r})e^{-i\omega t}$

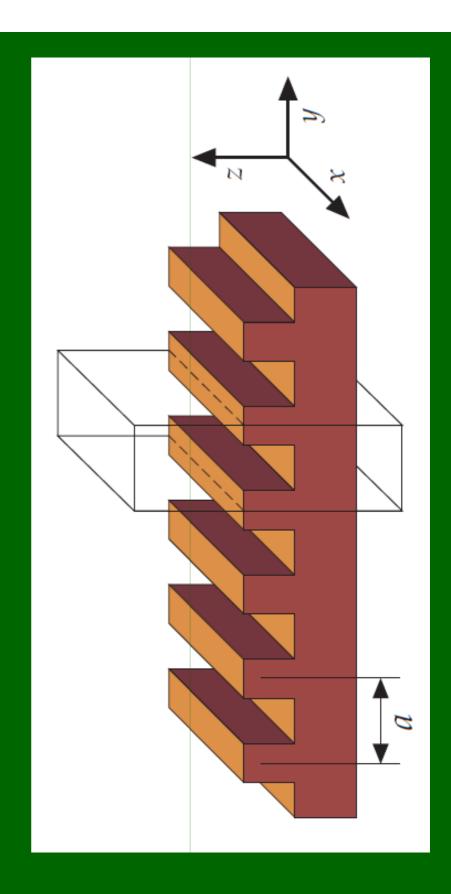
Electrodynamics

$$\hat{\Theta} = \nabla \times \frac{1}{\varepsilon(\mathbf{r})} \nabla \times$$

$$[\hat{O}_{I}, \hat{\Theta}]\mathbf{H} = \hat{O}_{I}(\hat{\Theta}\mathbf{H}) - \hat{\Theta}(\hat{O}_{I}\mathbf{H}) = 0$$

$$\implies \hat{\Theta}(\hat{O}_{I}\mathbf{H}) = \hat{O}_{I}(\hat{\Theta}\mathbf{H}) = \frac{\omega^{2}}{c^{2}}(\hat{O}_{I}\mathbf{H}).$$

$$\hat{T}_{dz}e^{ikz} = e^{ik(z-d)} = (e^{-ikd})e^{ikz}.$$



$$\hat{T}_{d\hat{\mathbf{x}}}e^{ik_{x}x} = e^{ik_{x}(x-d)} = (e^{-ik_{x}d})e^{ik_{x}x}$$

$$\hat{T}_{\mathbf{R}}e^{ik_{y}y} = e^{ik_{y}(y-\ell a)} = (e^{-ik_{y}\ell a})e^{ik_{y}y}.$$

$$\mathbf{H}_{kx,ky}(\mathbf{r}) = e^{ik_x x} \sum_{m} \mathbf{c}_{ky,m}(z) e^{i(k_y + mb)y}$$

$$= e^{ik_x x} \cdot e^{ik_y y} \cdot \sum_{m} \mathbf{c}_{ky,m}(z) e^{imby}$$

$$= e^{ik_x x} \cdot e^{ik_y y} \cdot \mathbf{u}_{k_y}(y,z),$$

$$= e^{ik_x x} \cdot e^{ik_y y} \cdot \mathbf{u}_{k_y}(y,z),$$

 $\mathbf{H}(\ldots,y,\ldots)\propto e^{ik_yy}\cdot\mathbf{u}_{k_y}(y,\ldots).$

 $\mathbf{k} = k_1 \mathbf{b}_1 + k_2 \mathbf{b}_2 + k_3 \mathbf{b}_3$

 $\mathbf{H}_{\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}\mathbf{u}_{\mathbf{k}}(\mathbf{r}),$

 $\mathbf{u}_{\mathbf{k}}(\mathbf{r}) = \mathbf{u}_{\mathbf{k}}(\mathbf{r} + \mathbf{k})$

Quantum Mechanics

 $V(\mathbf{r}) = V(\mathbf{r} + \mathbf{R})$ $[\hat{H}, \hat{T}_{\mathbf{R}}] = 0$

Discrete translational symmetry

Commutation relationships

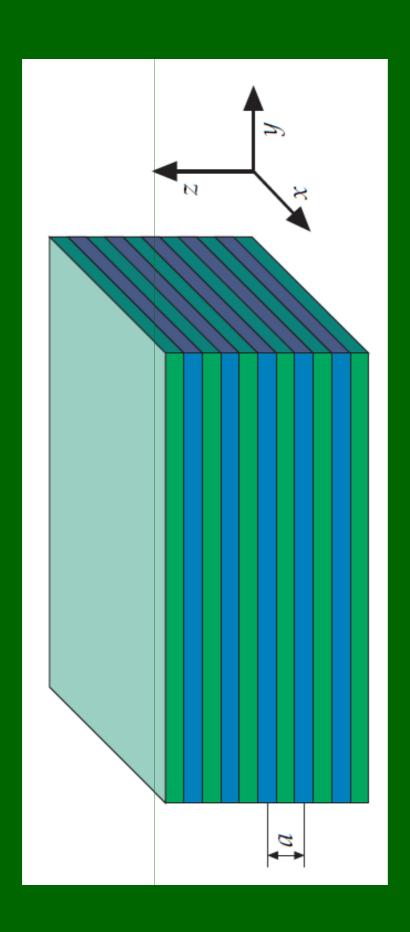
Bloch's theorem

 $\Psi_{\mathbf{k}n}(\mathbf{r}) = u_{\mathbf{k}n}(\mathbf{r})e^{i\mathbf{k}\cdot\mathbf{r}}$

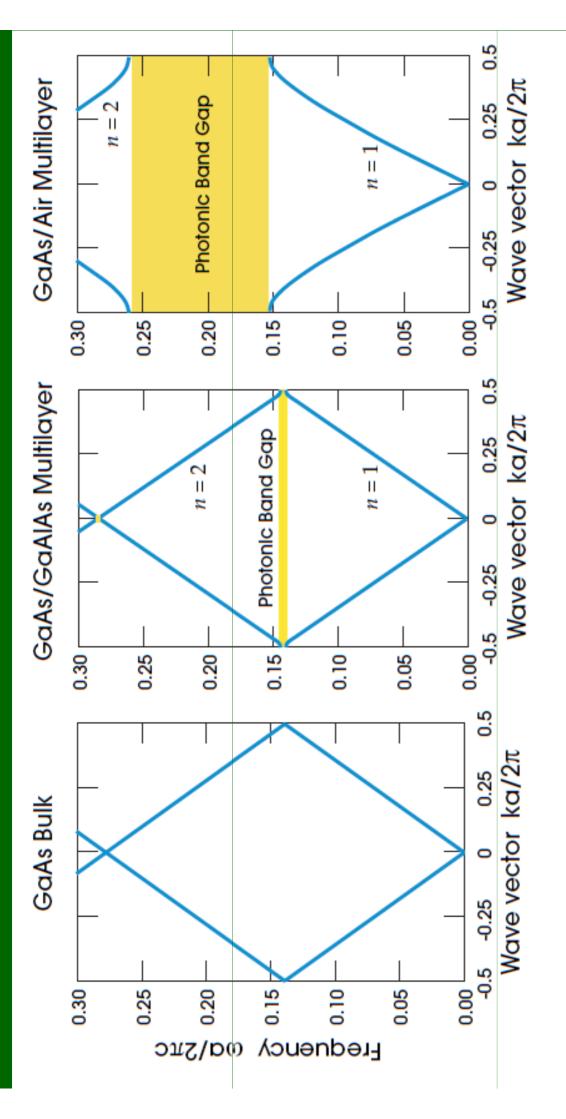
 $\varepsilon(\mathbf{r}) = \varepsilon(\mathbf{r} + \mathbf{R})$ $[\Theta, \hat{T}_{\mathbf{R}}] = 0$

Electrodynamics

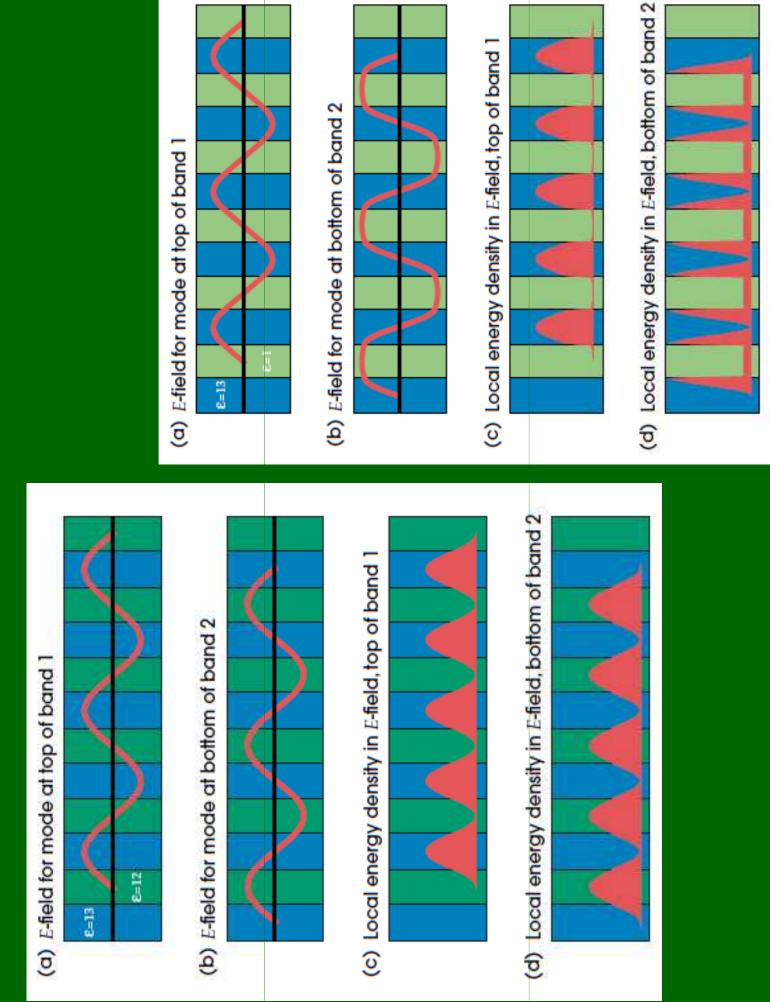
 $\mathbf{H}_{\mathbf{k}n}(\mathbf{r}) = \mathbf{u}_{\mathbf{k}n}(\mathbf{r})e^{i\mathbf{k}\cdot\mathbf{r}}$

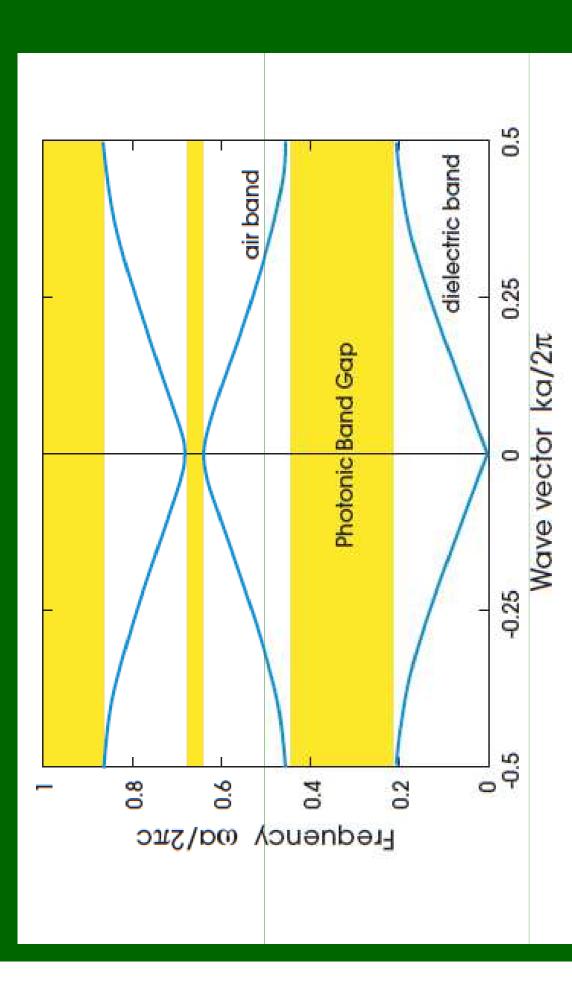


 $\mathbf{H}_{n,k_z,\mathbf{k}_{\parallel}}(\mathbf{r}) = e^{i\mathbf{k}_{\parallel}\cdot\boldsymbol{\rho}} e^{ik_zz} \mathbf{u}_{n,k_z,\mathbf{k}_{\parallel}}(z).$



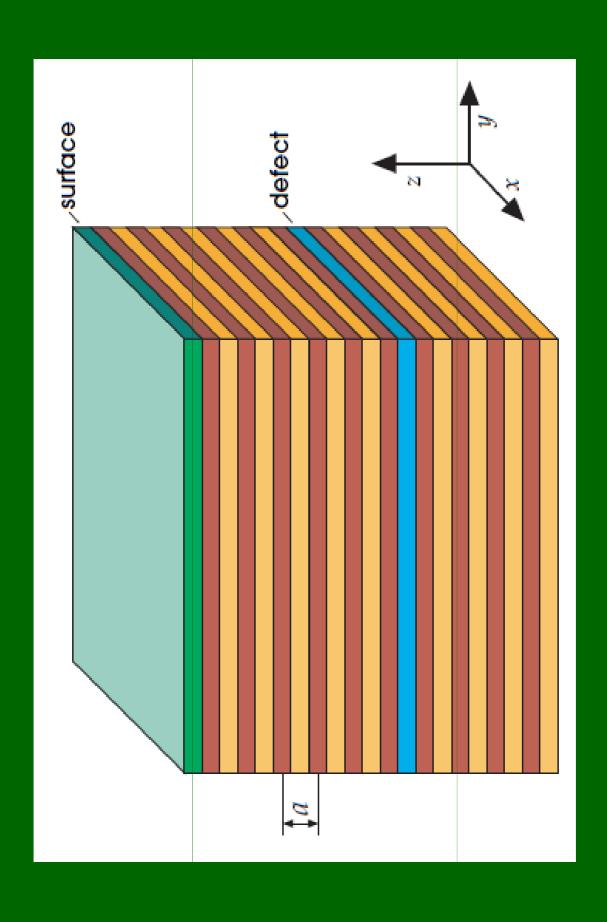
has the same dielectric constant $\varepsilon = 13$. Center: layers alternate between ε of 13 and 12. Figure 2: The photonic band structures for on-axis propagation, as computed for three different multilayer films. In all three cases, each layer has a width 0.5a. Left: every layer Right: layers alternate between ε of 13 and 1.

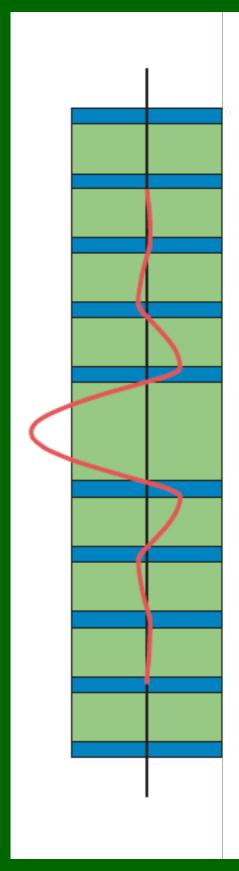




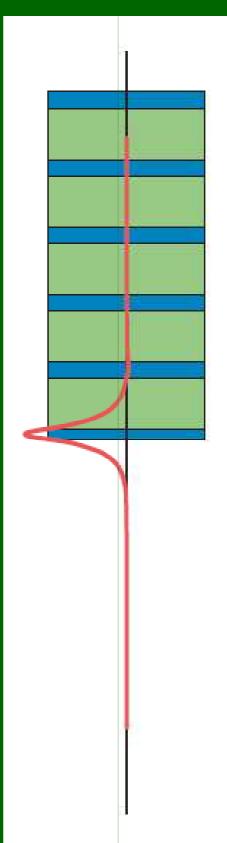
alternating layers of different widths. The width of the $\varepsilon = 13$ layer is 0.2a, and the width of the Figure 5: The photonic band structure of a multilayer film with lattice constant a and $\varepsilon = 1$ layer is 0.8a.

 $\frac{\Delta\omega}{\omega_{\mathrm{m}}} \approx \frac{\Delta\varepsilon}{\varepsilon} \cdot \frac{\sin(\pi d/a)}{\pi}$

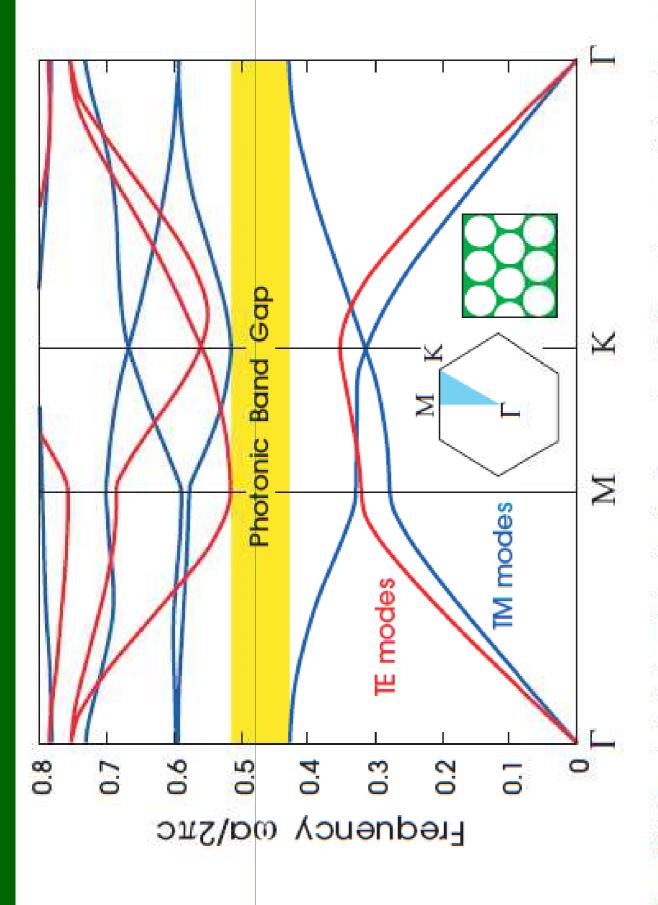




between two perfect multilayer films. The red curve is the electric-field strength of the defect Figure 11: A defect in a multilayer film, formed by doubling the thickness of a single low-s layer in the structure of figure 5. Note that this can be considered to be an interface state associated with this structure (for on-axis propagation).



actually oscillates in sign with each period of the crystal, but with an amplitude too small to Figure 13: The electric field strength associated with a localized mode at the surface of a multilayer film. In particular, the mode at $k_y = 2\pi/a$ from figure 14 is shown. (This mode see clearly here.)



represent TE bands. The inset shows the high-symmetry points at the corners of the irreducible drilled in a dielectric substrate ($\varepsilon = 13$). The blue lines represent TM bands and the red lines Figure 10: The photonic band structure for the modes of a triangular array of air columns Brillouin zone (shaded light blue). Note the complete photonic band gap.

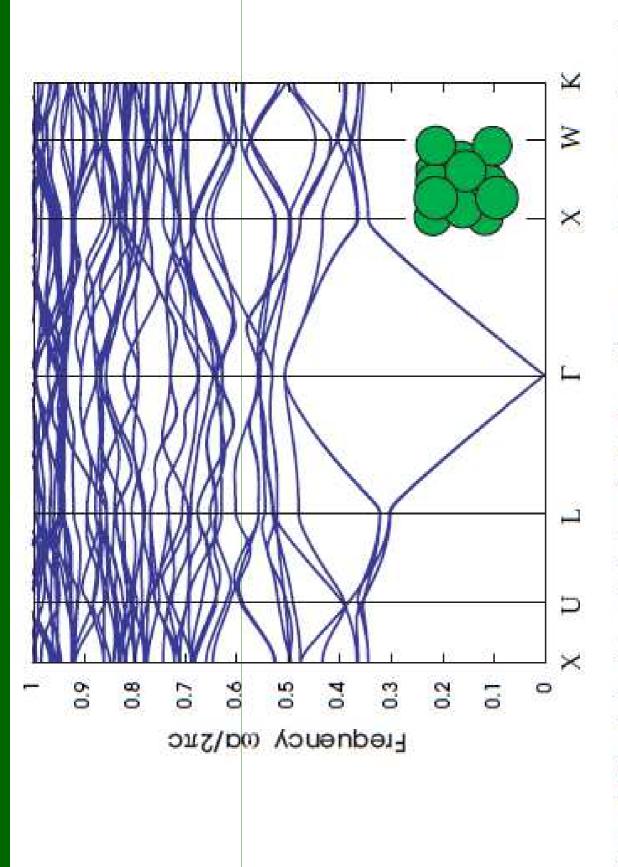
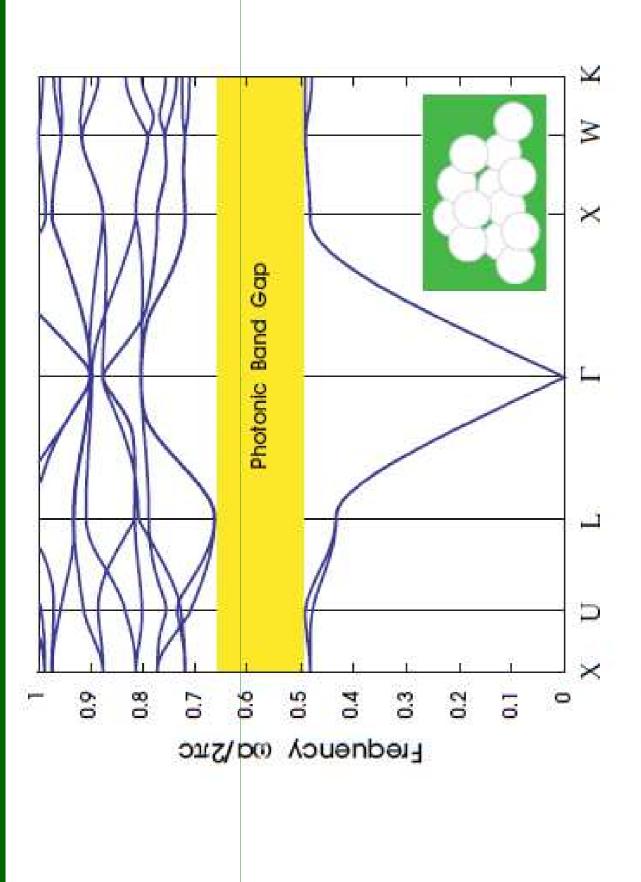
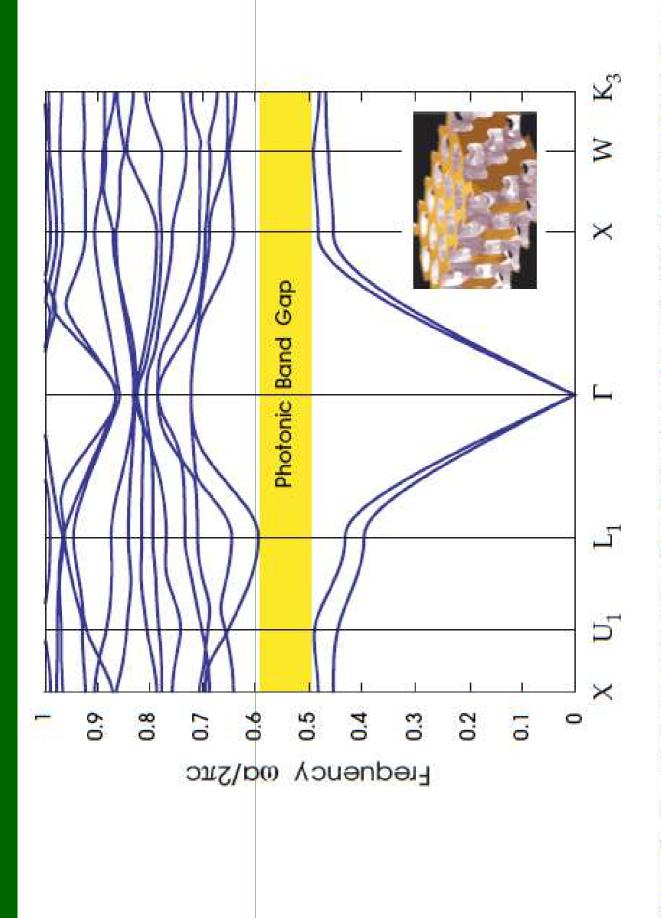


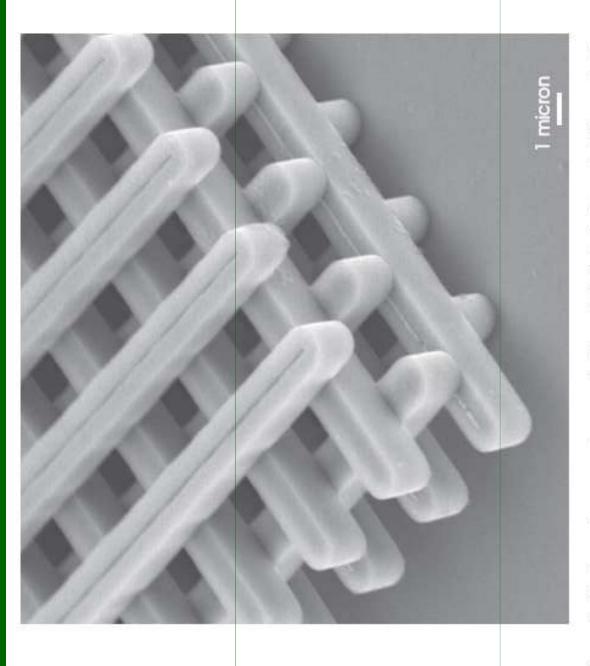
Figure 2: The photonic band structure for the lowest-frequency electromagnetic modes of a Irreducible Brillouin zone between the labelled high-symmetry points; see appendix B for a Note the absence of a complete photonic band gap. The wave vector varies across the face-centered cubic (fcc) lattice of close-packed dielectric spheres ($\epsilon = 13$) in air (inset) discussion of the Brillouin zone of an fcc lattice.



spheres in a high dielectric ($\varepsilon = 13$) material (inset). A complete photonic band gap is shown In yellow. The wave vector varies across the irreducible Brillouin zone between the labelled high-symmetry points; see appendix B for a discussion of the Brillouin zone of an fcc lattice. Figure 3: The photonic band structure for the lowest bands of a diamond lattice of air



the edges of the complete gap (yellow). A detailed discussion of this band structure can be figure 4). Wave vectors are shown for a portion of the irreducible Brillouin zone that includes Figure 5: The photonic band structure for the lowest bands of Yablonovite (inset, from found in Yablonovitch et al. (1991a).



made of silicon and has a complete band gap centered at a wavelength of approximately Figure 6: Electron-microscope image of a "woodpile" photonic crystal. The crystal is 12 microns (Lin et al., 1998b). The dielectric "logs" form an fcc (or fct) lattice stacked in the [001] direction. (Image courtesy S.-Y. Lin.)

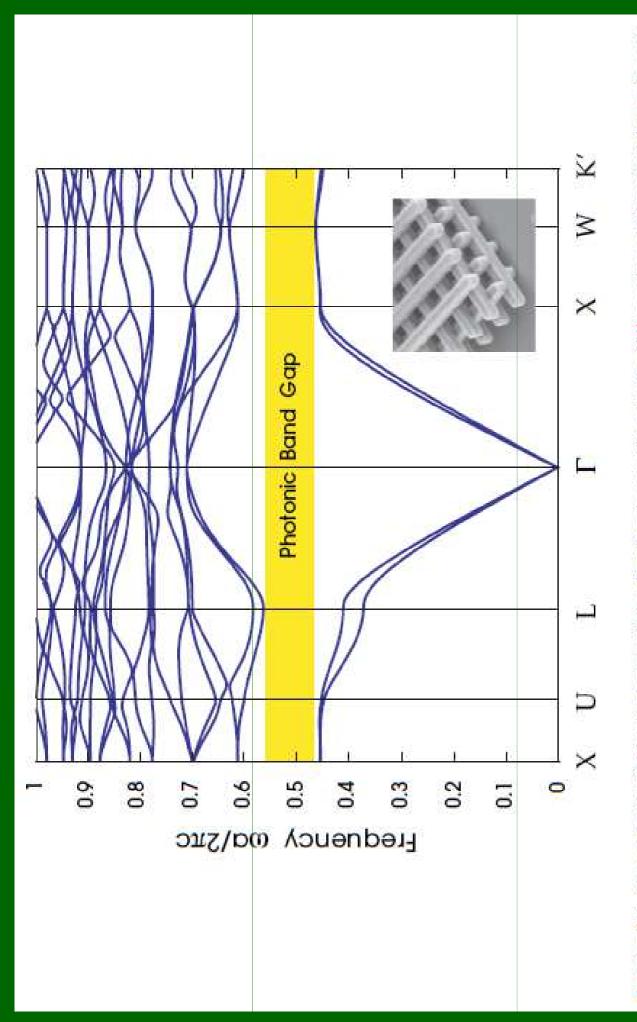
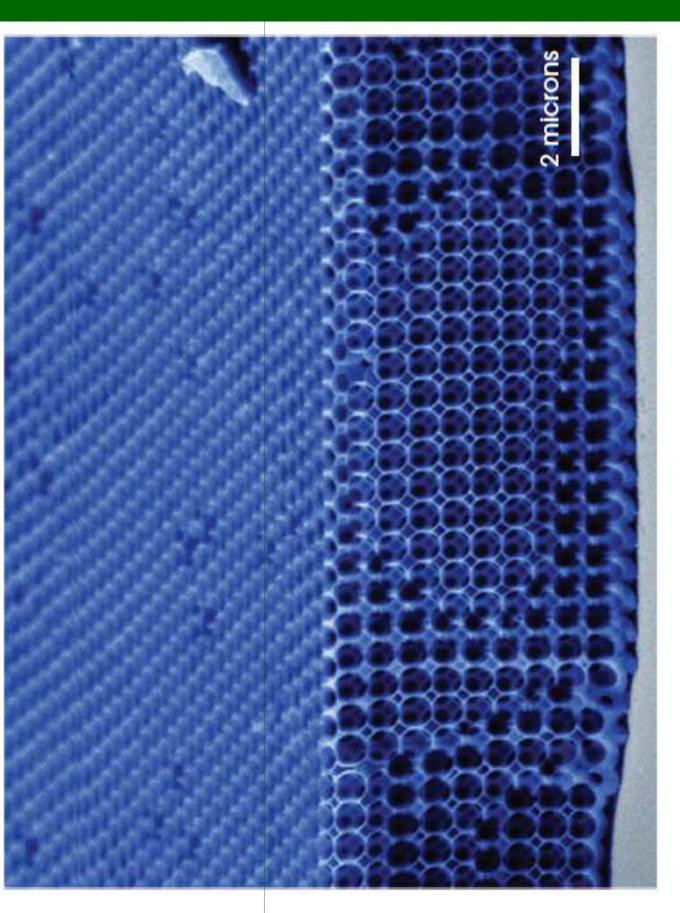
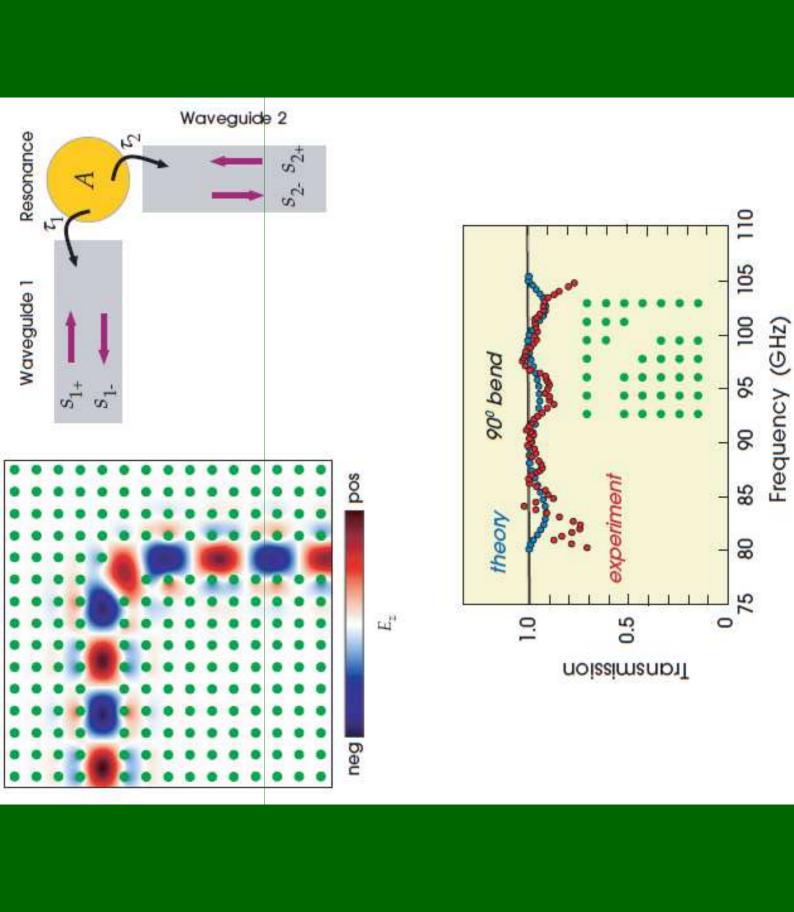


Figure 7: The photonic band structure for the lowest bands of the woodpile structure (inset, from figure 6) with $\varepsilon = 13 \log s$ in air. The irreducible Brillouin zone is larger than that of the fcc lattice described in appendix B, because of reduced symmetry—only a portion is shown, including the edges of the complete photonic band gap (yellow).

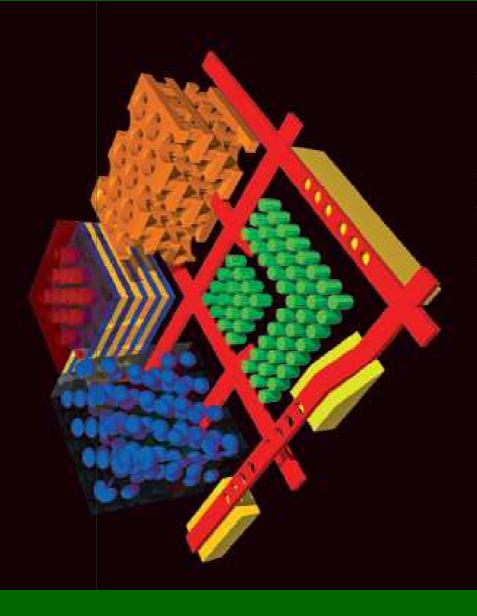


demonstrated to have a complete band gap around a wavelength of 1.3 microns in Vlasov et al. (2001). Unlike figure 8, this is actually an fcc lattice of hollow dielectric (silicon) shells, Figure 9: Electron-microscope image (artificial coloring) of inverse-opal structure which increases the size of the gap. (Image courtesy D. J. Norris.)



Photonic Crystals Molding the Flow of Light

SECOND EDITION



John D. Joannopoulos Steven G. Johnson Joshua N. Winn Robert D. Meade