

Si₃N₄ Ceramic Composite with the addition of MWCNTs and ML-Graphene

Awais Qadir^{a,b}

Supervisors: Dr. Katalin Balázsi ^b Dr. Csaba Balázsi ^b

^a Doctoral School on Materials Sciences and Technologies, Obuda University, Bécsi str. 96/b, 1034 Budapest, Hungary

^b Thin Film Physics Department, Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege M. str. 29-33, Budapest, Hungary

Obuda University, Budapest, 2018. 01.25.

Aim of work

 To study the effect of oxidized Si₃N₄ powder particles on the mechanical properties of hot isostatic pressed Si₃N₄–CNTs/Grpahene composite material.

Plans Accomplished

1 st Semester			2 nd Semester	
C: N		Ad	Addition of 1% CNTs and 2% Graphene	
SI ₃ N ₄		1459	Si ₃ N ₄ - 1% CNTs – 2% Graphene	
1434	Si ₃ N ₄ (Ref.)	1460	Si_3N_4 (10 hrs oxidized) – 1% CNTs – 2% Graphene	
		1461	Si_3N_4 (20 hrs oxidized) – 1% CNTs –	
1435	Si_3N_4 (10 hrs Oxidized)		Addition of 3% CNTs	
		1462	$Si_3N_4 - 3\%$ CNTs (Ref.)	
		1463	Si_3N_4 (10 hrs oxidized) – 3% CNTs	
		1464	Si_3N_4 (20 hrs Oxidized) – 3% CNTs	
1436	Si ₃ N ₄ (20 hrs Oxidized)		Addition of 3 wt.% Graphene	
		1468	Si ₃ N ₄ – 3% Graphene (Ref.)	
		1469	Si_3N_4 (10 hrs Oxidized) – 3%	
			Graphene	
1/27/2018		1470	Si ₃ N ₄ (20 hrs oxidized) – 3% Graphene	

Progress Report 2017-2018

 Paper has been submitted in the Journal of European **Ceramic Society (Impact Factor** 3.411) (Submitted)

Journal of the **European Ceramic Society**

Participation in Conferences 2017-2018

- Attended Hungarian Microscopic Conference 2017 in Siofok, Hungary
- Poster Presentation in ECerS 2017, 15th Conference & Exhibition of the European Ceramic Society, 2017
- Poster Presentation International Conference Deformation and Fracture in PM Materials, High Tatras, 2017. Oct.22-25.
- Poster Presentation in Joint ICTP-IAEA Workshop on Fundamentals of Vitrification and Vitreous Materials for Nuclear Waste Immobilization, The Abdus Salam Centre for Theoritical Physics (ICTP), Trieste Italy. Nov. 06 -10, 2017.
- Oral Presentation "17th PhD Students Materials Science Day", University of Pannon, Veszprem, Hungary, Dec. 4. 2017
- Doctoral Summer School at Károly Róbert University, August 2017

Obuda University, Budapest, 2018. 01.25.

ECerS2017

15th Conference & Exhibition of the European Ceramic Society July 9–13, 2017 / Budapest, Hungary

IAEA International Atomic Energy Agency

Silicon nitride

- Silicon nitride (Si₃N₄) based ceramics are gaining more attention due to their promising high-temperature thermal and mechanical properties.
- Three crystallographic structures of silicon nitride (Si₃N₄), α , β and γ phases.

CNTs vs Graphene

Carbon Nanotubes (CNTs)

- Allotrope of carbon
- hollow, cylindrical structures, a sheet of graphene rolled into a cylinder.
- high thermal conductivity, electron mobility, and chemical reactivity

Graphene

- Allotrope of carbon
- 2D material, a single layer of graphite, with carbon atoms arranged in a hexagonal, honeycomb lattice.
- high thermal conductivity, electron mobility, and chemical reactivity

Base Powders

Structure of Base powders

SEM TEM HRTEM StaN₂ α -Si₃N₄ Powder 10 mm 500nn SEM b) 10 hrs oxidized α -Si₃N₄ 1-1,5nm 10 nm SiO, 500nm TEM SEM HRTEM 20 hrs oxidized 4nm Si₃N₄ SiO α -Si₃N₄ 50 um 10 nm 500nm

Obuda University, Budapest, 2018. 01.25.

Characterization of powder and sintered sample

Base Powder

Sintered at 1700 °C

JCPDS PDF (01-076-1407), (00-33-1160), (00-47-1627) and (00-83-0944)

Characterization Sintered Samples

11

1/27/2018

Materials Preparation

Materials Preparation

Characterization of samples

Si₃N₄-1% MWCNTs-2%MLG

Si₃N₄-3% MWCNTs

JCPDS PDF (01-076-1407), (00-33-1160), (00-47-1627) and (00-83-0944)

Morpholigical Study of Si₃N₄-1%MWCNTs-2%MLG

1/27/2018

20 hrs

oxidized

(Ref.)

10 hrs

oxidized

Morpholigical Study of Si₃N₄-3% MWCNTs

100 um

1/27/2018

Conclusion

- Powders were milled successfully by attrition milling
- Particles size in between 50 nm to 500 nm
- Oxidation of base powder was done successfully and confirmed by EDX, HRTEM.
- MWCNTs and MLG mixed with the base powder successfully without its deformation.
- Uniform distribution of MWCNTs and Graphene in the powder.
- Further investigation are needed for the CNTs interaction with the matrix (Si3N4).

Future Plans

- Sintering by HIP
- Characterization of Sintered Samples by TEM, HRTEM, SEM, EDX.
- Mechanical Testing (HV, 3 pt. & 4pt. Bending st., toughness, Young's Modulus and surface wear testing)
- Paper Publication in International Journal

Future Plans for Conferences

• Junior EURO-MAT 2018 (Abstract Submitted).

FEMS Junior EUROMAT 2018 The Main Event for Young Materials Scientists July 8-12, 2018 / Budapest, Hungary

Obuda University, Budapest, 2018. 01.25.

Acknowledgement

- Dr. Zsolt Fogarassy for TEM & HRTEM and Dr. Zsolt E. Horvath for XRD.
- Thanks to supervisors for their support
- Special Thanks to the technical Staff Viktor
 Varga and Sandor Gurban

Thank you for your attention

Obuda University, Budapest, 2018. 01.25.