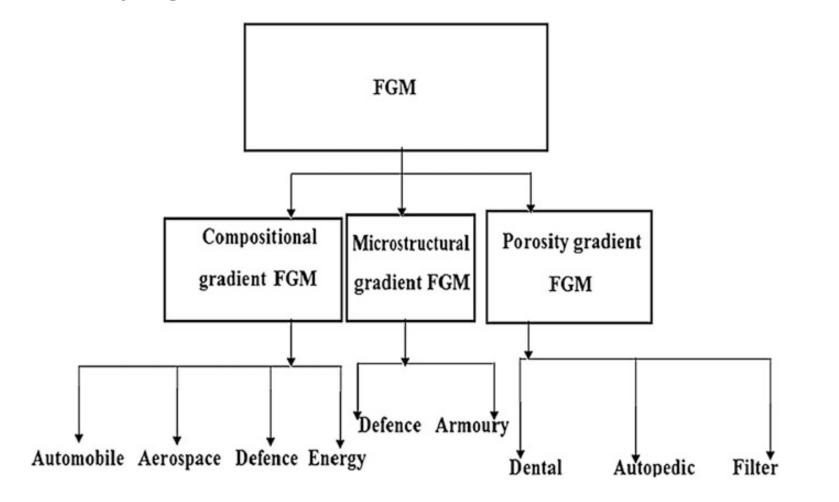
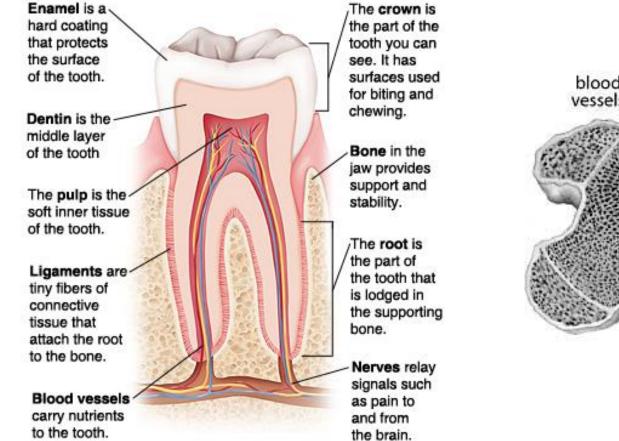
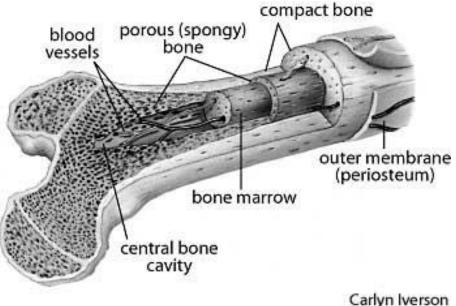

## 3D Printing of Functionally Graded Materials (FGM) for Biomedical Applications

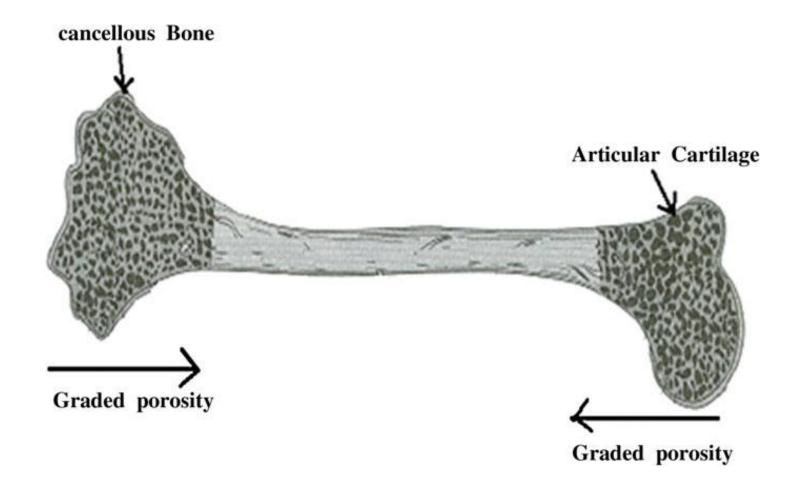



Hassanen Jaber and Tunde Kovacs


# Introduction to Functionally Graded Materials (FGM)




# Areas of applications for the three types of functionally graded materials

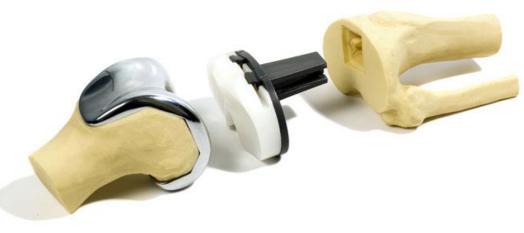



#### Functionally Graded Materials in Nature





### Functionally Graded Materials in Nature




## Applications

#### Artificial hip made of titanium



#### A total knee replacement joint



## Applications

#### **Shoulder joint prosthesis**



## Hydroxyapatite-coated titanium root implant



### Composition of orthopedic implant alloys

| Element | Cobalt-based alloys |                        |                                       | Stainless steel |                 | Titanium alloys                  |           |
|---------|---------------------|------------------------|---------------------------------------|-----------------|-----------------|----------------------------------|-----------|
|         | ASTM<br>F75<br>cast | ASTM<br>F90<br>wrought | ASTM F563<br>isostatically<br>pressed | ASTM<br>F138/A  | ASTM<br>F138/9B | Commercial<br>purity<br>titanium | Ti–6Al–4V |
| Со      | Balance             | Balance                | Balance                               | _               | _               | _                                | _         |
| Cr      | 27-30               | 12-19                  | 18-22                                 | 17-20           | 17-20           | _                                | _         |
| Fe      | 0.75 max            | 3.0 max                | 4–6                                   | Balance         | Balance         | 0.3-0.5                          | 0.25 max  |
| Мо      | 5–7                 | _                      | 3–4                                   | 2–4             | 2–4             | _                                | _         |
| Ni      | 2.5 max             | 9–11                   | 15-25                                 | 10-14           | 10-14           | _                                | _         |
| Ti      | _                   | _                      | 0.5-3.5                               | _               | _               | Balance                          | Balance   |
| Al      | _                   | _                      | _                                     | _               | _               | _                                | 5.5-6.5   |
| V       | _                   | _                      | _                                     | _               | _               | _                                | 3.5-4.5   |
| С       | 0.35 max            | 0.05-0.15              | 0.05 max                              | 0.03 max        | 0.08 max        | 0.01 max                         | 0.08 max  |
| Mn      | 1.0 max             | 2.0 max                | 1.0 max                               | 2.0 max         | 2.0 max         | _                                | _         |
| Р       | _                   | _                      | _                                     | 0.03 max        | 0.025 max       | _                                | _         |
| S       | _                   | _                      | 0.01 max                              | 0.03 max        | 0.01 max        | _                                | _         |
| Si      | 1.0 max             | 1.0 max                | 0.5 max                               | 0.75 max        | 0.75 max        | _                                | _         |
| 0       | _                   | _                      | _                                     | _               | _               | 0.18-0.40                        | 0.13 max  |
| Н       | _                   | _                      | _                                     | _               | _               | 0.01-0.015                       | 0.012 max |
| N       | _                   | _                      | -                                     | _               | -               | 0.03-0.05                        | 0.05 max  |

 Table 12.1
 Composition of orthopedic implant alloys (wt%); from Bonfield, 1997.

#### The most important issues for metallic implant materials

- Osteolysis and aseptic loosening
- Lack of bioactivity
- Metallic ion releasing
- Mismatch of the Young's modulus between bone (10–30 GPa) and metallic implant materials (110 GPa for Ti and 248 GPa for CoCrMo alloy)

# The mechanical properties of some natural and biomaterials

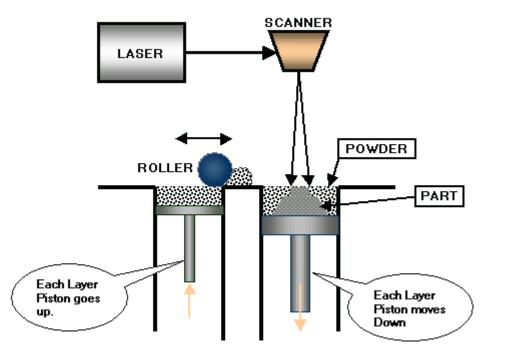

| Material                      | Elastic<br>modulus<br>(GN m <sup>-2</sup> ) | Tensile<br>strength<br>(MN m <sup>-2</sup> ) | Elongation (%) | Fracture<br>toughness<br>(MN m <sup>-3/2</sup> ) | Fatigue<br>strength<br>(MN m <sup>-2</sup> ) |
|-------------------------------|---------------------------------------------|----------------------------------------------|----------------|--------------------------------------------------|----------------------------------------------|
| Austenitic<br>stainless steel | 200                                         | 200-1100                                     | 40             | 100                                              | 200–250                                      |
| Cobalt-Chromium               | 230                                         | 450-1000                                     | 10-30          | 100                                              | 600                                          |
| Ti-6Al-4V                     | 105-110                                     | 750-1050                                     | 12             | 80                                               | 350-650                                      |
| Alumina                       | 365                                         | _                                            | <1             | _                                                | 400                                          |
| Hydroxyapatite                | 85                                          | 40-100                                       | _              | _                                                |                                              |
| Glass fiber                   | 70                                          | 2000                                         | 2              | 1-4                                              |                                              |
| PMMA                          | 2.8                                         | 55                                           | 8              | _                                                | 20-30                                        |
| Bone cement                   | 2.3-3                                       | 1.5                                          | 1-2            | 400                                              |                                              |
| Polyethylene                  | 1                                           | 20-30                                        |                | 1–4                                              | 16                                           |
| Nylon 66                      | 4.4                                         | 700                                          | 25             |                                                  |                                              |
| Silicone rubber               | $6 \times 10^{-3}$                          | 1.4                                          |                |                                                  |                                              |
| Polycarbonate                 | 2                                           | 60                                           |                |                                                  |                                              |
| Bone (cortical)               | 7–25                                        | 50-150                                       | _              | 2-12                                             |                                              |
| Bone (cancellous)             | 0.1 - 1.0                                   | 50-150                                       |                | 2-12                                             |                                              |
| Tooth enamel                  | 13                                          | 240                                          | _              | _                                                |                                              |
| Tooth dentine                 | _                                           | 135                                          |                | _                                                |                                              |
| Collagen, tendon, wet         | 2                                           | 100                                          | 10             | _                                                |                                              |

 Table 12.2
 The mechanical properties of some natural and biomaterials.

# Physiochemical, mechanical and biological properties of HAp

| PropertiesExperimental dataChemical composition $Ca_{10}(PO_4)_6(OH)_2$ Ca/P molar ratio1.67Crystal systemHexagonalYoung's modulus (GPa)80 - 110Elastic modulus (GPa)114Compressive strength (MPa)400 - 900Bending strength (MPa)115 - 200Density (g/cm <sup>3</sup> )3.16Relative density (%)95 - 99.5Fracture toughness (MPa. Mm <sup>1/2</sup> )0.7 - 1.2Hardness (HV)600Decomposition Temp. (°C)>1000Melting point (°C)1614Thermal conductivity (W/cm. K)0.013BiocompatibilityHighBiodegradationLowCellular-compatibilityHighOsteoconductivityHigh |                                              |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------|
| Ca/P molar ratio1.67Crystal systemHexagonalYoung's modulus (GPa) $80 - 110$ Elastic modulus (GPa) $114$ Compressive strength (MPa) $400 - 900$ Bending strength (MPa) $115 - 200$ Density (g/cm <sup>3</sup> ) $3.16$ Relative density (%) $95 - 99.5$ Fracture toughness (MPa. Mm <sup>1/2</sup> ) $0.7 - 1.2$ Hardness (HV) $600$ Decomposition Temp. (°C)>1000Melting point (°C) $1614$ Thermal conductivity (W/cm. K) $0.013$ BiocompatibilityHighBiodegradationLowCellular-compatibilityHigh                                                      | Properties                                   | Experimental data |
| Crystal systemHexagonalYoung's modulus (GPa) $80 - 110$ Elastic modulus (GPa) $114$ Compressive strength (MPa) $400 - 900$ Bending strength (MPa) $115 - 200$ Density (g/cm <sup>3</sup> ) $3.16$ Relative density (%) $95 - 99.5$ Fracture toughness (MPa. Mm <sup>1/2</sup> ) $0.7 - 1.2$ Hardness (HV) $600$ Decomposition Temp. (°C)>1000Melting point (°C) $1614$ Thermal conductivity (W/cm. K) $0.013$ BiocompatibilityHighBiodegradationLowCellular-compatibilityHigh                                                                          | Chemical composition                         | Ca10(PO4)6(OH)2   |
| Young's modulus (GPa) $80 - 110$ Elastic modulus (GPa) $114$ Compressive strength (MPa) $400 - 900$ Bending strength (MPa) $115 - 200$ Density (g/cm <sup>3</sup> ) $3.16$ Relative density (%) $95 - 99.5$ Fracture toughness (MPa. Mm <sup>1/2</sup> ) $0.7 - 1.2$ Hardness (HV) $600$ Decomposition Temp. (°C)>1000Melting point (°C) $1614$ Thermal conductivity (W/cm. K) $0.013$ BiocompatibilityHighBiodegradationLowCellular-compatibilityHigh                                                                                                 | Ca/P molar ratio                             | 1.67              |
| Elastic modulus (GPa)114Compressive strength (MPa) $400 - 900$ Bending strength (MPa) $115 - 200$ Density (g/cm <sup>3</sup> ) $3.16$ Relative density (%) $95 - 99.5$ Fracture toughness (MPa. Mm <sup>1/2</sup> ) $0.7 - 1.2$ Hardness (HV) $600$ Decomposition Temp. (°C)>1000Melting point (°C)1614Thermal conductivity (W/cm. K) $0.013$ BiocompatibilityHighBiodegradationLowCellular-compatibilityHigh                                                                                                                                          | Crystal system                               | Hexagonal         |
| Compressive strength (MPa) $400 - 900$ Bending strength (MPa) $115 - 200$ Density (g/cm <sup>3</sup> ) $3.16$ Relative density (%) $95 - 99.5$ Fracture toughness (MPa. Mm <sup>1/2</sup> ) $0.7 - 1.2$ Hardness (HV) $600$ Decomposition Temp. (°C)>1000Melting point (°C)1614Thermal conductivity (W/cm. K) $0.013$ BiocompatibilityHighBiodegradationLowCellular-compatibilityHigh                                                                                                                                                                  | Young's modulus (GPa)                        | 80 - 110          |
| Bending strength (MPa) $115 - 200$ Density (g/cm <sup>3</sup> ) $3.16$ Relative density (%) $95 - 99.5$ Fracture toughness (MPa. Mm <sup>1/2</sup> ) $0.7 - 1.2$ Hardness (HV) $600$ Decomposition Temp. (°C)>1000Melting point (°C)1614Thermal conductivity (W/cm. K) $0.013$ BiocompatibilityHighBiodegradationLowCellular-compatibilityHigh                                                                                                                                                                                                         | Elastic modulus (GPa)                        | 114               |
| Density $(g/cm^3)$ 3.16Relative density (%)95 - 99.5Fracture toughness (MPa. Mm <sup>1/2</sup> )0.7 - 1.2Hardness (HV)600Decomposition Temp. (°C)>1000Melting point (°C)1614Thermal conductivity (W/cm. K)0.013BiocompatibilityHighBiodegradationLowCellular-compatibilityHigh                                                                                                                                                                                                                                                                         | Compressive strength (MPa)                   | 400 - 900         |
| Relative density (%) $95 - 99.5$ Fracture toughness (MPa. Mm <sup>1/2</sup> ) $0.7 - 1.2$ Hardness (HV) $600$ Decomposition Temp. (°C)>1000Melting point (°C)1614Thermal conductivity (W/cm. K) $0.013$ BiocompatibilityHighBiodegradationLowCellular-compatibilityHigh                                                                                                                                                                                                                                                                                | Bending strength (MPa)                       | 115-200           |
| Fracture toughness (MPa. $Mm^{1/2}$ ) $0.7 - 1.2$ Hardness (HV) $600$ Decomposition Temp. (°C)>1000Melting point (°C)1614Thermal conductivity (W/cm. K) $0.013$ BiocompatibilityHighBioactivityHighBiodegradationLowCellular-compatibilityHigh                                                                                                                                                                                                                                                                                                         | Density (g/cm <sup>3</sup> )                 | 3.16              |
| Hardness (HV)600Decomposition Temp. (°C)>1000Melting point (°C)1614Thermal conductivity (W/cm. K)0.013BiocompatibilityHighBioactivityHighBiodegradationLowCellular-compatibilityHigh                                                                                                                                                                                                                                                                                                                                                                   | Relative density (%)                         | 95 - 99.5         |
| Decomposition Temp. (°C)>1000Melting point (°C)1614Thermal conductivity (W/cm. K)0.013BiocompatibilityHighBioactivityHighBiodegradationLowCellular-compatibilityHigh                                                                                                                                                                                                                                                                                                                                                                                   | Fracture toughness (MPa. Mm <sup>1/2</sup> ) | 0.7-1.2           |
| Melting point (°C)1614Thermal conductivity (W/cm. K)0.013BiocompatibilityHighBioactivityHighBiodegradationLowCellular-compatibilityHigh                                                                                                                                                                                                                                                                                                                                                                                                                | Hardness (HV)                                | 600               |
| Thermal conductivity (W/cm. K)0.013BiocompatibilityHighBioactivityHighBiodegradationLowCellular-compatibilityHigh                                                                                                                                                                                                                                                                                                                                                                                                                                      | Decomposition Temp. (°C)                     | >1000             |
| BiocompatibilityHighBioactivityHighBiodegradationLowCellular-compatibilityHigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Melting point (°C)                           | 1614              |
| BioactivityHighBiodegradationLowCellular-compatibilityHigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Thermal conductivity (W/cm. K)               | 0.013             |
| Biodegradation Low<br>Cellular-compatibility High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Biocompatibility                             | High              |
| Cellular-compatibility High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bioactivity                                  | High              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Biodegradation                               | Low               |
| Osteoconductivity High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cellular-compatibility                       | High              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Osteoconductivity                            | High              |

### Laser Sintering/melting System



#### Tasks

Selection and characterization of the base materials

**Production of metal-ceramic homogeneous composites** 

Metallurgical, Mechanical and wear characterization of metalceramic homogeneous composites

**Processing of functionally graded components** 

**Characterization of functionally graded components** 

**Production of the reduced scale final component** 

Papers and thesis writing.

### My Publications

#### **1-Preparation and Synthesis of Hydroxyapatite Bio-Ceramic From Hungarian Bio-Waste by Thermal Heat Treatment**



16 January, 2018

Dear Hassanen Jaber,

On behalf of the Organizing Committee, we are pleased to inform you that your abstract (Preparation and Synthesis of Hydroxyapatite Bio-Ceramic From Hungarian Bio-Waste by Thermal Heat Treatment) has been **accepted for oral presentation** at the FEMS Junior EUROMAT 2018 conference to be held between 08-12 July, 2018 in Budapest, Hungary.

#### 2-Similar and Dissimilar Resistance Spot Welds of DP600 and X8Cr17 steels sheets: Welding Current and Fracture Toughness

#### International Engineering Symposium at Bánki

27 November 2017 Efficiency, Safety and Security

| OBUDA UNIVERSITY                                            |     |
|-------------------------------------------------------------|-----|
| Donát Bánki Faculty of Mechanical                           | 261 |
| Donát Bánki Faculty of Mechanical<br>and Safety Engineering |     |
|                                                             | -   |

Á 5 1 1 5 1 1 1 1 1 1 5 5 5 5 1 1 1

| BK] Editor Decision       | ، 2:58 2018 م 19 |
|---------------------------|------------------|
| (Ágota Drégelyi-Kiss) امن |                  |

Hassanen jaber:

To: (Hassanen jaber

We have reached a decision regarding your submission to Bánki Közlemények (Bánki Reports), "Similar and Dissimilar Resistance Spot Welds of DP600 and X8Cr17 steels sheets: Welding Current and Fracture Toughness".

Our decision is to: Accept Submission

Ágota Drégelyi-Kiss dregelyi.agota@bgk.uni-obuda.hu

Bánki Közlemények (Bánki Reports)

#### 3-The Effect of Nano-Quenching Media on the Tensile Properties and Microstructure of Medium Carbon Steel

XI. ORSZÁGOS ANYAGTUDOMÁNYI KONFERENCIA 2017. október 15-17. Balatonkenese - Telekom hotel

Your article is uploaded and now "at Editor". They will let you know the review soon.

----- Továbbított üzenet -----Feladó: Hohol Róbert <hoholr@diamond-congress.hu> Címzett: juhos sandorne <juhos.sandorne@bgk.uni-obuda.hu> Elküldött üzenetek: Tue, 23 Jan 2018 10:00:47 +0100 (CET) Tárgy: OATK 2017 - Értesítés cikk státuszáról

Tisztelt Jaber Hassanen!

Örömmel értesítem, hogy "The Effect of Nano-Quenching Media on the Tensile Properties and Microstructure of Medium Carbon Steel" című cikke adatbázisunkba sikeresen fel lett töltve, státusza: \*szerkesztőnél\*.

Az online beadás lezárult, további módosításokra egyelőre nincs lehetőség. A bírálatok eredményéről a bírálati folyamatot követően fogjuk tájékoztatni, ebben a levélben küldjük majd el a bizottság javítási kéréseit is.

A szervezőbizottság nevében üdvözlettel:

Hohol Róbert szervező 4- Dissimilar spot welding of dual phase steel / low carbon
Steel: phase transformations and mechanical properties
2nd International Conference on Vehicle and Automotive Engineering, University of Miskolc, Hungary

| [VAE2018] Editorial Decision on Abstract                                                                                                                                                                                                                                                                                                                       | نوفمبر، 2017 12:10 م 15 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| admin :au                                                                                                                                                                                                                                                                                                                                                      |                         |
| To: Mr Hassanen Jaber                                                                                                                                                                                                                                                                                                                                          |                         |
| Cc: Hassanen Jaber                                                                                                                                                                                                                                                                                                                                             |                         |
| Mr Hassanen Jaber:                                                                                                                                                                                                                                                                                                                                             |                         |
| Congratulations, your abstract Dissimilar spot welding of dual phase steel<br>low carbon Steel: phase transformations and mechanical properties has been<br>accepted for presentation at 2nd International Conference on Vehicle and<br>Automotive Engineering which is being held 2018-05-23 at Miskolc. You may<br>now submit your paper for further review. | /                       |
| Thank you and looking forward to your participation in this event.                                                                                                                                                                                                                                                                                             |                         |

altkota@uni-miskolc.hu

### **Outline of current and future work**

- 1- Additive manufacturing of functionally graded structures for biomedical applications.
- 2- Dissimilar Laser, frication stir spot and resistance spot welding of second generation and Third generation of advanced high strength steels AHSSs: phase transformations and mechanical properties.

|   | 2017 | 2018                |                     | 2019                |                     | 2020                |                     |
|---|------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|   |      | 1 <sup>st</sup> Sem | 2 <sup>st</sup> Sem | 1 <sup>st</sup> Sem | 2 <sup>st</sup> Sem | 1 <sup>st</sup> Sem | 2 <sup>st</sup> Sem |
| 1 |      |                     |                     |                     |                     |                     |                     |
| 2 |      |                     |                     |                     |                     |                     |                     |

