

ÓBUDA UNIVERSITY

DOCTORAL SCHOOL ON MATERIALS SCIENCE AND TECHNOLOGIES

6TH SEMESTER'S PROGRESS PRESENTATION

{CALIXRESORCINARENES IONOPHORES: A HEAVY METALS IONS DETECTION APPLICATION}

BY: LARBI EDDAIF

SUPERVISOR: DR. SHABAN ABDUL

Budapest, January 23rd 2019

"CALIXRESORCINARENES/CALIXA RENES IONOPHORES FOR THE HM CATIONS MONITORING IN WATER ENVIRONMENT"

MOLECULAR STRUCTURES OF CALIX[4]RESORCINARENE AND CALIX[4]ARENE

Calix[4] resorcinarene

Calix[4]arene

ACCOMPLISHED WORK

THEIR SYNTHESIS IS BASED ON THE CONDENSATION BETWEEN PARA-SUBSTITUTED PHENOLS/RESO RCINOLS AND ALDEHYDES • A: C-DEC-9-EN-1-YLCALIX[4]RESORCINARENE

• A': C-TRANS-2, CIS-6-OCTA-1,5-DIEN-1-

YLCALIX[4]RESORCINARENE,

- B: C-DEC-9-ENYLCALIX[4]RESORCINARENE-O-(S-)-α-METHYLBENZYLAMINE
- C: C-DEC-9-ENYLCALIX [4]RESORCINARENE-O-(R+)-α METHYLBENZYLAMINE
- D: C-NONYLCALIX[4]RESORCINARENE,
- E: Tert-butylcalix[4]arene,
- **F**: C-UNDECYLCALIX[4]RESORCINARENE.

Eddaif, L., et al. J Therm Anal Calorim (2019) https://doi.org/10.1007/s10973-018-7978-0

Eddaif, L., et al. Arabian Journal of Chemistry (2019) https://doi.org/10.1016/j.arabjc.2019.09.002

FTIR:

FUNCTIONAL GROUPS DETERMINATION;

¹H AND ¹³C NMR:

PROPOSED STRUCTURES' VALIDATION;

TG-DSC-MS:

MOLECULES PURITY & THERMAL BEHAVIOR;

XRD:

CRYSTALLINITY DEGREE EVALUATION.

IONOPHORES CHARACTERIZAT ION

MAIN FINDINGS

LANGMUIR Π -A ISOTHERMS PRINCIPLE

MAIN FINDINGS

Eddaif, L., et al. Electroanalysis (2019), doi: 10.1002/elan.201900651

Eddaif, L., et al. Water, Air, & Soil Pollution (2019), doi.org/10.1007/s11270-019-4322-7

SCHEMATIC DIAGRAM OF A QUARTZ CRYSTAL SENSOR RESONATING AT THE FUNDAMENTAL AND 3RD OVERTONE FREQUENCY (LEFT), AND COMPLEX IMPEDANCE SPECTRUM VS. FREQUENCY (F3) WITH PARAMETERS FITTED TO THE RAW DATA (RIGHT).

DIAGRAMS OF THE CHANGE IN CONDUCTANCE CURVE (N=1 FOR A 5MHZ CRYSTAL), RESONANT FREQUENCY AND BANDWIDTH ON DEPOSITION OF A RIGID FILM ONTO THE SENSOR SURFACE

DIAGRAMS OF THE CHANGE IN CONDUCTANCE CURVE, RESONANT FREQUENCY AND BANDWIDTH

FOR THE DEPOSITION OF A VISCOELASTIC LAYER ON THE SENSOR SURFACE.

DIAGRAMS OF THE CHANGE IN CONDUCTANCE CURVE, RESONANT FREQUENCY AND BANDWIDTH FOR A CHANGE OF SOLUTIONS WITH DIFFERENT VISCOSITIES

$\Delta F \& \Delta D STUDIES$

FREQUENCY (a) AND DISSIPATION SHIFTS (b) OF COMPOUND B BASED QCM SENSOR

$\Delta F \& \Delta D STUDIES$

FREQUENCY (a) AND DISSIPATION SHIFTS (b) OF COMPOUND C BASED QCM SENSOR

NORMALIZED FREQUENCY AND DISSIPATION ENERGY SHIFTS FOR COMPOUNDS B AND C AT VARIOUS Pb^{2+} CONCENTRATIONS.

* Values are presented as average ± standard deviation

		•	· · · · · · · · · · · · · · · · · · ·
Measured value	Concentrations (ppm)	Compound B*	Compound C*
	Blank (D. water)	-0.30 ± 0.04	-1.20 ± 0.10
	5	-2.40 ± 0.30	-2.50 ± 0.30
	25	-4.80 ± 0.10	-2.86 ± 0.04
$\Delta F_n/n$ (HZ)	250	-6.80 ± 0.40	-5.72 ± 0.70
	500	-8.50 ± 0.10	-7.85 ± 0.40
	1000	-10.00 ± 0.10	-23.00 ± 0.01
		0.47 + 0.02	0.10 ± 0.02
	Blank (D. water)	0.47 ± 0.23	0.10 ± 0.03
	5	0.54 ± 0.11	0.10 ± 0.01
$\Delta D_n (10^{-0})$	25	1.10 ± 0.34	0.21 ± 0.09
	250	2.50 ± 0.48	0.13 ± 0.01
	500	4.10 ± 0.23	0.11 ± 0.01
	1000	8.50 ± 0.07	0.10 ± 0.02
	1000	8.50 ± 0.07	0.10 ± 0.02

OBTAINED CALIBRATION CURVE FOR THE CALIX-QCM BASED SENSOR IN THE Pb²⁺ CONCENTRATION RANGE OF 5-1000 PPM FOR COMPOUND B (a). LINEAR RANGE(b)

OBTAINED CALIBRATION CURVE FOR THE CALIX-QCM BASED SENSOR IN THE Pb²⁺ CONCENTRATION RANGE OF 5-1000 PPM FOR COMPOUND C (c). LINEAR RANGE(d)

SENSING CHARACTERISTICS OF COMPOUNDS B AND C

BASED SENSOR PLATFORMS AGAINST DIFFERENT HM

	Compound B			Compound C				
HM ions	LR ppm	Sensitivity Hz.ppm ⁻¹	LOD ppm	LOQ ppm	LR ppm	Sensitivity Hz.ppm ⁻¹	LOD ppm	LOQ ppm
Cd ²⁺	3-1000	0.009	0.89	2.96	4-250	0.009	1.10	3.66
Hg ²⁺	1-1000	0.038	0.20	0.66	2-250	0.110	0.65	2.16
Cu ²⁺	0.5-1000	0.030	0.11	0.36	0.5-250	0.033	0.16	0.53
Pb ²⁺	25-1000	0.008	0.45	1.50	5-500	0.020	0.30	1.00

ACHIEVEMENTS

No.	Date	Туре	Journal	IF
1	March	Conference	Proceedings of the 1st Coatings and Interfaces	
	2019	paper	Web Conference	
2	November	Conference	Proceedings of the International Joint Conference on	
	2019	paper	Environmental and Light Industry Technologies	
3	January	Journal article	Journal of Thermal Analysis and Calorimetry,	2.471
	2019		Springer nature	
4	May	Journal article	International Journal of Environmental Analytical	1.267
	2019	(Review)	Chemistry	
			Taylor & Francis	
5	September	Journal article	Arabian Journal of Chemistry	3.298
	2019		Elsevier BV	
6	November	Journal article	Water, Air and Soil Pollution	1.774
	2019		Springer Nature	
7	December	Journal article	Electroanalysis	2.691
	2019		Wiley Online Library	

CONFERENCES/ SEMINARS

Conference /Seminar	Location/	Oral/Poster	Conference
	Year	presentation	achievement
1st Coatings and Interfaces Web Conference	Italy	Oral presentation	Conference paper
	March 2019		
ForMilk summer school (at the Research	Budapest,		
Centre for Natural Sciences)	May 2019		
Matrafured International Meeting on	Visegrad,		Journal article
Chemical Sensors	June 2019	Poster presentation	
TTK AKI seminar (at the Research Centre	Budapest,	Oral presentation	
for Natural Sciences)	October 2019		
Workshop on Environmental Sciences and			
Engineering (International Joint Conference	Budapest,	Oral presentation	Conference paper
on Environment and Light Industry	November 2019		
Technologies)			

THANK YOU FOR YOUR ATTENTION.

HAPPY TO ANSWER ANY QUESTIONS.